基于q -学习的非线性系统事件触发数据驱动控制

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Mouquan Shen;Xianming Wang;Song Zhu;Tingwen Huang;Qing-Guo Wang
{"title":"基于q -学习的非线性系统事件触发数据驱动控制","authors":"Mouquan Shen;Xianming Wang;Song Zhu;Tingwen Huang;Qing-Guo Wang","doi":"10.1109/TSMC.2024.3493965","DOIUrl":null,"url":null,"abstract":"This article aims to study event-triggered data-driven control of nonlinear systems via Q-learning. An input-output mapping is described by a pseudo-partial derivatives form. A Q-learning-based optimization criterion is provided to establish a data-driven control law. A dynamic penalty factor composed of tracking errors is supplied to accelerate errors convergence. Consequently, a novel triggering rule related to this factor and performance cost is proposed to save communication resources. Sufficient conditions are developed for guaranteeing the ultimately uniform boundedness of the resultant tracking errors system. Two simulation studies are executed to verify the effectiveness of the presented scheme.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 2","pages":"1069-1077"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-Triggered Data-Driven Control of Nonlinear Systems via Q-Learning\",\"authors\":\"Mouquan Shen;Xianming Wang;Song Zhu;Tingwen Huang;Qing-Guo Wang\",\"doi\":\"10.1109/TSMC.2024.3493965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to study event-triggered data-driven control of nonlinear systems via Q-learning. An input-output mapping is described by a pseudo-partial derivatives form. A Q-learning-based optimization criterion is provided to establish a data-driven control law. A dynamic penalty factor composed of tracking errors is supplied to accelerate errors convergence. Consequently, a novel triggering rule related to this factor and performance cost is proposed to save communication resources. Sufficient conditions are developed for guaranteeing the ultimately uniform boundedness of the resultant tracking errors system. Two simulation studies are executed to verify the effectiveness of the presented scheme.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"55 2\",\"pages\":\"1069-1077\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10767597/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10767597/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过q -学习研究非线性系统的事件触发数据驱动控制。输入-输出映射用伪偏导数形式描述。提出了基于q学习的优化准则来建立数据驱动的控制律。提出了一种由跟踪误差组成的动态惩罚因子来加速误差收敛。为了节约通信资源,提出了一种与该因素和性能成本相关的触发规则。给出了保证所得到的跟踪误差系统最终均匀有界的充分条件。通过两个仿真研究验证了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-Triggered Data-Driven Control of Nonlinear Systems via Q-Learning
This article aims to study event-triggered data-driven control of nonlinear systems via Q-learning. An input-output mapping is described by a pseudo-partial derivatives form. A Q-learning-based optimization criterion is provided to establish a data-driven control law. A dynamic penalty factor composed of tracking errors is supplied to accelerate errors convergence. Consequently, a novel triggering rule related to this factor and performance cost is proposed to save communication resources. Sufficient conditions are developed for guaranteeing the ultimately uniform boundedness of the resultant tracking errors system. Two simulation studies are executed to verify the effectiveness of the presented scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信