真实世界的临床多组学分析揭示了 CDK4/6 抑制剂的ER依赖性和ER依赖性耐药性的分岔点

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhengyan Kan, Ji Wen, Vinicius Bonato, Jennifer Webster, Wenjing Yang, Vladimir Ivanov, Kimberly Hyunjung Kim, Whijae Roh, Chaoting Liu, Xinmeng Jasmine Mu, Jennifer Lapira-Miller, Jon Oyer, Todd VanArsdale, Paul A. Rejto, Jadwiga Bienkowska
{"title":"真实世界的临床多组学分析揭示了 CDK4/6 抑制剂的ER依赖性和ER依赖性耐药性的分岔点","authors":"Zhengyan Kan, Ji Wen, Vinicius Bonato, Jennifer Webster, Wenjing Yang, Vladimir Ivanov, Kimberly Hyunjung Kim, Whijae Roh, Chaoting Liu, Xinmeng Jasmine Mu, Jennifer Lapira-Miller, Jon Oyer, Todd VanArsdale, Paul A. Rejto, Jadwiga Bienkowska","doi":"10.1038/s41467-025-55914-x","DOIUrl":null,"url":null,"abstract":"<p>To better understand drug resistance mechanisms to CDK4/6 inhibitors and inform precision medicine, we analyze real-world multi-omics data from 400 HR+/HER2- metastatic breast cancer patients treated with CDK4/6 inhibitors plus endocrine therapies, including 200 pre-treatment and 227 post-progression samples. The prevalences of <i>ESR1</i> and <i>RB1</i> alterations significantly increase in post-progression samples. Integrative clustering analysis identifies three subgroups harboring different resistance mechanisms: ER driven, ER co-driven and ER independent. The ER independent subgroup, growing from 5% pre-treatment to 21% post-progression, is characterized by down-regulated estrogen signaling and enrichment of resistance markers including <i>TP53</i> mutations, <i>CCNE1</i> over-expression and Her2/Basal subtypes. Trajectory inference analyses identify a pseudotime variable strongly correlated with ER independence and disease progression; and revealed bifurcated evolutionary trajectories for ER-independent vs. ER-dependent drug resistance mechanisms. Machine learning models predict therapeutic dependency on <i>ESR1</i> and <i>CDK4</i> among ER-dependent tumors and <i>CDK2</i> dependency among ER-independent tumors, confirmed by experimental validation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"38 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-world clinical multi-omics analyses reveal bifurcation of ER-independent and ER-dependent drug resistance to CDK4/6 inhibitors\",\"authors\":\"Zhengyan Kan, Ji Wen, Vinicius Bonato, Jennifer Webster, Wenjing Yang, Vladimir Ivanov, Kimberly Hyunjung Kim, Whijae Roh, Chaoting Liu, Xinmeng Jasmine Mu, Jennifer Lapira-Miller, Jon Oyer, Todd VanArsdale, Paul A. Rejto, Jadwiga Bienkowska\",\"doi\":\"10.1038/s41467-025-55914-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To better understand drug resistance mechanisms to CDK4/6 inhibitors and inform precision medicine, we analyze real-world multi-omics data from 400 HR+/HER2- metastatic breast cancer patients treated with CDK4/6 inhibitors plus endocrine therapies, including 200 pre-treatment and 227 post-progression samples. The prevalences of <i>ESR1</i> and <i>RB1</i> alterations significantly increase in post-progression samples. Integrative clustering analysis identifies three subgroups harboring different resistance mechanisms: ER driven, ER co-driven and ER independent. The ER independent subgroup, growing from 5% pre-treatment to 21% post-progression, is characterized by down-regulated estrogen signaling and enrichment of resistance markers including <i>TP53</i> mutations, <i>CCNE1</i> over-expression and Her2/Basal subtypes. Trajectory inference analyses identify a pseudotime variable strongly correlated with ER independence and disease progression; and revealed bifurcated evolutionary trajectories for ER-independent vs. ER-dependent drug resistance mechanisms. Machine learning models predict therapeutic dependency on <i>ESR1</i> and <i>CDK4</i> among ER-dependent tumors and <i>CDK2</i> dependency among ER-independent tumors, confirmed by experimental validation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-55914-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55914-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地了解CDK4/6抑制剂的耐药机制并为精准医学提供信息,我们分析了400例HR+/HER2转移性乳腺癌患者的真实多组学数据,这些患者接受了CDK4/6抑制剂和内分泌治疗,包括200例治疗前和227例进展后样本。在进展后样本中,ESR1和RB1改变的患病率显著增加。综合聚类分析确定了三个具有不同抗性机制的亚群:内质网驱动,内质网共同驱动和内质网独立。雌激素受体非依赖性亚组,从治疗前的5%增长到进展后的21%,其特征是雌激素信号下调,耐药标志物(包括TP53突变、CCNE1过表达和Her2/基底亚型)富集。轨迹推断分析确定了与内质网独立性和疾病进展密切相关的伪时间变量;揭示了内质网非依赖性和内质网依赖性耐药机制的分化进化轨迹。机器学习模型预测了er依赖性肿瘤中对ESR1和CDK4的治疗依赖性以及er非依赖性肿瘤中对CDK2的依赖性,并得到了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Real-world clinical multi-omics analyses reveal bifurcation of ER-independent and ER-dependent drug resistance to CDK4/6 inhibitors

Real-world clinical multi-omics analyses reveal bifurcation of ER-independent and ER-dependent drug resistance to CDK4/6 inhibitors

To better understand drug resistance mechanisms to CDK4/6 inhibitors and inform precision medicine, we analyze real-world multi-omics data from 400 HR+/HER2- metastatic breast cancer patients treated with CDK4/6 inhibitors plus endocrine therapies, including 200 pre-treatment and 227 post-progression samples. The prevalences of ESR1 and RB1 alterations significantly increase in post-progression samples. Integrative clustering analysis identifies three subgroups harboring different resistance mechanisms: ER driven, ER co-driven and ER independent. The ER independent subgroup, growing from 5% pre-treatment to 21% post-progression, is characterized by down-regulated estrogen signaling and enrichment of resistance markers including TP53 mutations, CCNE1 over-expression and Her2/Basal subtypes. Trajectory inference analyses identify a pseudotime variable strongly correlated with ER independence and disease progression; and revealed bifurcated evolutionary trajectories for ER-independent vs. ER-dependent drug resistance mechanisms. Machine learning models predict therapeutic dependency on ESR1 and CDK4 among ER-dependent tumors and CDK2 dependency among ER-independent tumors, confirmed by experimental validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信