{"title":"走向绿色和可持续的锌离子电池:天然溶剂型电解质的潜力","authors":"Gulsah Yaman Uzunoglu, Recep Yuksel","doi":"10.1002/smll.202411478","DOIUrl":null,"url":null,"abstract":"Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability. This review explores the potential of natural solvent-based electrolytes derived from renewable and biodegradable resources. Natural deep eutectic solvents (DES), bio-ionic liquids, and biomass-derived organic compounds present unique advantages, including a wider electrochemical stability window, reduced HER activity, and controlled zinc deposition. Examples include DESs based on choline chloride (ChCl), glycerol-based systems, and biomass-derived solvents such as γ-valerolactone (GVL) and aloe vera, demonstrating improved cycling stability and dendrite suppression. Despite their promise, challenges such as high viscosity, cost, and scalability remain critical barriers to commercialization. This review underscores the need for further research to optimize natural solvent formulations, enhance Zn anode compatibility, and integrate these systems into practical applications. By addressing these challenges, natural solvent-based electrolytes can pave the way for safer, high-performance, and environmentally sustainable ZIBs, particularly large-scale energy storage systems.","PeriodicalId":228,"journal":{"name":"Small","volume":"12 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Green and Sustainable Zinc-Ion Batteries: The Potential of Natural Solvent-Based Electrolytes\",\"authors\":\"Gulsah Yaman Uzunoglu, Recep Yuksel\",\"doi\":\"10.1002/smll.202411478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability. This review explores the potential of natural solvent-based electrolytes derived from renewable and biodegradable resources. Natural deep eutectic solvents (DES), bio-ionic liquids, and biomass-derived organic compounds present unique advantages, including a wider electrochemical stability window, reduced HER activity, and controlled zinc deposition. Examples include DESs based on choline chloride (ChCl), glycerol-based systems, and biomass-derived solvents such as γ-valerolactone (GVL) and aloe vera, demonstrating improved cycling stability and dendrite suppression. Despite their promise, challenges such as high viscosity, cost, and scalability remain critical barriers to commercialization. This review underscores the need for further research to optimize natural solvent formulations, enhance Zn anode compatibility, and integrate these systems into practical applications. By addressing these challenges, natural solvent-based electrolytes can pave the way for safer, high-performance, and environmentally sustainable ZIBs, particularly large-scale energy storage systems.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202411478\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411478","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Toward Green and Sustainable Zinc-Ion Batteries: The Potential of Natural Solvent-Based Electrolytes
Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability. This review explores the potential of natural solvent-based electrolytes derived from renewable and biodegradable resources. Natural deep eutectic solvents (DES), bio-ionic liquids, and biomass-derived organic compounds present unique advantages, including a wider electrochemical stability window, reduced HER activity, and controlled zinc deposition. Examples include DESs based on choline chloride (ChCl), glycerol-based systems, and biomass-derived solvents such as γ-valerolactone (GVL) and aloe vera, demonstrating improved cycling stability and dendrite suppression. Despite their promise, challenges such as high viscosity, cost, and scalability remain critical barriers to commercialization. This review underscores the need for further research to optimize natural solvent formulations, enhance Zn anode compatibility, and integrate these systems into practical applications. By addressing these challenges, natural solvent-based electrolytes can pave the way for safer, high-performance, and environmentally sustainable ZIBs, particularly large-scale energy storage systems.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.