Nikola Petrovic, Gabriele Laudadio, Chase A. Salazar, Caleb J. Kong, Jenson Verghese, Alexander Hesketh, Giselle P. Reyes, Jean-Nicolas Desrosiers, C. Oliver Kappe, David Cantillo
{"title":"无牺牲金属阳极的可扩展电化学脱卤羧化","authors":"Nikola Petrovic, Gabriele Laudadio, Chase A. Salazar, Caleb J. Kong, Jenson Verghese, Alexander Hesketh, Giselle P. Reyes, Jean-Nicolas Desrosiers, C. Oliver Kappe, David Cantillo","doi":"10.1002/adsc.202401538","DOIUrl":null,"url":null,"abstract":"A scalable electrochemical procedure for the synthesis of carboxylic acids from organic halides has been developed using a spinning cylinder electrode electrochemical reactor. The electrochemical process is based on the reductive dehalogenation of the starting material followed by trapping of the resulting carbanion with CO2. The protocol is compatible both with organic chlorides and bromides and uses inexpensive graphite and stainless steel as electrode materials. As sacrificial metal anodes are avoided, the method can be readily scaled up in flow mode. The procedure is compatible with a wide range of substrates (24 examples), including aryl and alkyl halides as well as heterocyclic compounds. Multigram scale preparations in flow mode have been demonstrated by processing 600 mL of reaction mixture in an electrolyte recirculation setup.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"24 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Electrochemical Dehalogenative Carboxylation without a Sacrificial Metal Anode\",\"authors\":\"Nikola Petrovic, Gabriele Laudadio, Chase A. Salazar, Caleb J. Kong, Jenson Verghese, Alexander Hesketh, Giselle P. Reyes, Jean-Nicolas Desrosiers, C. Oliver Kappe, David Cantillo\",\"doi\":\"10.1002/adsc.202401538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scalable electrochemical procedure for the synthesis of carboxylic acids from organic halides has been developed using a spinning cylinder electrode electrochemical reactor. The electrochemical process is based on the reductive dehalogenation of the starting material followed by trapping of the resulting carbanion with CO2. The protocol is compatible both with organic chlorides and bromides and uses inexpensive graphite and stainless steel as electrode materials. As sacrificial metal anodes are avoided, the method can be readily scaled up in flow mode. The procedure is compatible with a wide range of substrates (24 examples), including aryl and alkyl halides as well as heterocyclic compounds. Multigram scale preparations in flow mode have been demonstrated by processing 600 mL of reaction mixture in an electrolyte recirculation setup.\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/adsc.202401538\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401538","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Scalable Electrochemical Dehalogenative Carboxylation without a Sacrificial Metal Anode
A scalable electrochemical procedure for the synthesis of carboxylic acids from organic halides has been developed using a spinning cylinder electrode electrochemical reactor. The electrochemical process is based on the reductive dehalogenation of the starting material followed by trapping of the resulting carbanion with CO2. The protocol is compatible both with organic chlorides and bromides and uses inexpensive graphite and stainless steel as electrode materials. As sacrificial metal anodes are avoided, the method can be readily scaled up in flow mode. The procedure is compatible with a wide range of substrates (24 examples), including aryl and alkyl halides as well as heterocyclic compounds. Multigram scale preparations in flow mode have been demonstrated by processing 600 mL of reaction mixture in an electrolyte recirculation setup.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.