基于主动学习框架的增材制造Ti-6Al-4V高强延性工艺参数优化

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jeong Ah Lee, Jaejung Park, Man Jae Sagong, Soung Yeoul Ahn, Jung-Wook Cho, Seungchul Lee, Hyoung Seop Kim
{"title":"基于主动学习框架的增材制造Ti-6Al-4V高强延性工艺参数优化","authors":"Jeong Ah Lee, Jaejung Park, Man Jae Sagong, Soung Yeoul Ahn, Jung-Wook Cho, Seungchul Lee, Hyoung Seop Kim","doi":"10.1038/s41467-025-56267-1","DOIUrl":null,"url":null,"abstract":"<p>Optimizing process and heat-treatment parameters of laser powder bed fusion for producing Ti-6Al-4V alloys with high strength and ductility is crucial to meet performance demands in various applications. Nevertheless, inherent trade-offs between strength and ductility render traditional trial-and-error methods inefficient. Herein, we present Pareto active learning framework with targeted experimental validation to efficiently explore vast parameter space of 296 candidates, pinpointing optimal parameters to augment both strength and ductility. All Ti-6Al-4V alloys produced with the pinpointed parameters exhibit higher ductility at similar strength levels and greater strength at similar ductility levels compared to those in previous studies. By improving one property without significantly compromising the other, the framework demonstrates efficiency in overcoming the inherent trade-offs. Ultimately, Ti-6Al-4V alloys with ultimate tensile strength and total elongation of 1190 MPa and 16.5%, respectively, are produced. The proposed framework streamlines discovery of optimal processing parameters and promises accelerated development of high-performance alloys.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"57 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active learning framework to optimize process parameters for additive-manufactured Ti-6Al-4V with high strength and ductility\",\"authors\":\"Jeong Ah Lee, Jaejung Park, Man Jae Sagong, Soung Yeoul Ahn, Jung-Wook Cho, Seungchul Lee, Hyoung Seop Kim\",\"doi\":\"10.1038/s41467-025-56267-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optimizing process and heat-treatment parameters of laser powder bed fusion for producing Ti-6Al-4V alloys with high strength and ductility is crucial to meet performance demands in various applications. Nevertheless, inherent trade-offs between strength and ductility render traditional trial-and-error methods inefficient. Herein, we present Pareto active learning framework with targeted experimental validation to efficiently explore vast parameter space of 296 candidates, pinpointing optimal parameters to augment both strength and ductility. All Ti-6Al-4V alloys produced with the pinpointed parameters exhibit higher ductility at similar strength levels and greater strength at similar ductility levels compared to those in previous studies. By improving one property without significantly compromising the other, the framework demonstrates efficiency in overcoming the inherent trade-offs. Ultimately, Ti-6Al-4V alloys with ultimate tensile strength and total elongation of 1190 MPa and 16.5%, respectively, are produced. The proposed framework streamlines discovery of optimal processing parameters and promises accelerated development of high-performance alloys.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56267-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56267-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

优化激光粉末床熔合制备高强度、高塑性Ti-6Al-4V合金的工艺和热处理参数是满足各种应用性能要求的关键。然而,固有的强度和延性之间的权衡使得传统的试错方法效率低下。在此,我们提出了Pareto主动学习框架,并进行了有针对性的实验验证,以有效地探索296个候选参数的广阔空间,确定最佳参数,以提高强度和延性。与之前的研究相比,使用确定的参数生产的所有Ti-6Al-4V合金在相似强度水平下具有更高的延展性,并且在相似延展性水平下具有更高的强度。通过改进一个属性而不显著损害另一个属性,该框架在克服固有权衡方面显示出效率。最终制得抗拉强度和总伸长率分别为1190 MPa和16.5%的Ti-6Al-4V合金。提出的框架简化了最佳加工参数的发现,并有望加速高性能合金的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Active learning framework to optimize process parameters for additive-manufactured Ti-6Al-4V with high strength and ductility

Active learning framework to optimize process parameters for additive-manufactured Ti-6Al-4V with high strength and ductility

Optimizing process and heat-treatment parameters of laser powder bed fusion for producing Ti-6Al-4V alloys with high strength and ductility is crucial to meet performance demands in various applications. Nevertheless, inherent trade-offs between strength and ductility render traditional trial-and-error methods inefficient. Herein, we present Pareto active learning framework with targeted experimental validation to efficiently explore vast parameter space of 296 candidates, pinpointing optimal parameters to augment both strength and ductility. All Ti-6Al-4V alloys produced with the pinpointed parameters exhibit higher ductility at similar strength levels and greater strength at similar ductility levels compared to those in previous studies. By improving one property without significantly compromising the other, the framework demonstrates efficiency in overcoming the inherent trade-offs. Ultimately, Ti-6Al-4V alloys with ultimate tensile strength and total elongation of 1190 MPa and 16.5%, respectively, are produced. The proposed framework streamlines discovery of optimal processing parameters and promises accelerated development of high-performance alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信