后选择自适应玻色子采样的量子机器学习

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Francesco Hoch, Eugenio Caruccio, Giovanni Rodari, Tommaso Francalanci, Alessia Suprano, Taira Giordani, Gonzalo Carvacho, Nicolò Spagnolo, Seid Koudia, Massimiliano Proietti, Carlo Liorni, Filippo Cerocchi, Riccardo Albiero, Niki Di Giano, Marco Gardina, Francesco Ceccarelli, Giacomo Corrielli, Ulysse Chabaud, Roberto Osellame, Massimiliano Dispenza, Fabio Sciarrino
{"title":"后选择自适应玻色子采样的量子机器学习","authors":"Francesco Hoch, Eugenio Caruccio, Giovanni Rodari, Tommaso Francalanci, Alessia Suprano, Taira Giordani, Gonzalo Carvacho, Nicolò Spagnolo, Seid Koudia, Massimiliano Proietti, Carlo Liorni, Filippo Cerocchi, Riccardo Albiero, Niki Di Giano, Marco Gardina, Francesco Ceccarelli, Giacomo Corrielli, Ulysse Chabaud, Roberto Osellame, Massimiliano Dispenza, Fabio Sciarrino","doi":"10.1038/s41467-025-55877-z","DOIUrl":null,"url":null,"abstract":"<p>The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection. Beside quantum computational advantage demonstrations, a promising direction towards possibly useful applications can be found in the field of quantum machine learning, considering the currently almost unexplored intermediate scenario between non-adaptive linear optics and universal photonic quantum computation. Here, we report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform based on universal programmable photonic circuits fabricated via femtosecond laser writing. Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning with linear optical devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum machine learning with Adaptive Boson Sampling via post-selection\",\"authors\":\"Francesco Hoch, Eugenio Caruccio, Giovanni Rodari, Tommaso Francalanci, Alessia Suprano, Taira Giordani, Gonzalo Carvacho, Nicolò Spagnolo, Seid Koudia, Massimiliano Proietti, Carlo Liorni, Filippo Cerocchi, Riccardo Albiero, Niki Di Giano, Marco Gardina, Francesco Ceccarelli, Giacomo Corrielli, Ulysse Chabaud, Roberto Osellame, Massimiliano Dispenza, Fabio Sciarrino\",\"doi\":\"10.1038/s41467-025-55877-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection. Beside quantum computational advantage demonstrations, a promising direction towards possibly useful applications can be found in the field of quantum machine learning, considering the currently almost unexplored intermediate scenario between non-adaptive linear optics and universal photonic quantum computation. Here, we report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform based on universal programmable photonic circuits fabricated via femtosecond laser writing. Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning with linear optical devices.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-55877-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55877-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在信息量子处理的道路上,大规模通用量子计算的实现是一项具有挑战性和雄心勃勃的任务。近年来,人们一直在寻求一种中间方法,通过非通用计算模型来证明量子计算的优势。玻色子采样范式及其变体为光子平台提供了一个相关的例子,它们被认为是计算困难的,同时只需要通过线性光学和检测来操作生成的光子资源。除了量子计算的优势展示之外,考虑到目前几乎未被探索的非自适应线性光学和通用光子量子计算之间的中间场景,量子机器学习领域可能有一个有用的应用方向。在这里,我们报告了量子机器学习协议的实验实现,通过后选择在基于飞秒激光写入制造的通用可编程光子电路的玻色子采样平台上添加自适应。我们的实验结果表明,自适应玻色子采样是线性光学器件实现维度增强量子机器学习的可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum machine learning with Adaptive Boson Sampling via post-selection

Quantum machine learning with Adaptive Boson Sampling via post-selection

The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection. Beside quantum computational advantage demonstrations, a promising direction towards possibly useful applications can be found in the field of quantum machine learning, considering the currently almost unexplored intermediate scenario between non-adaptive linear optics and universal photonic quantum computation. Here, we report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform based on universal programmable photonic circuits fabricated via femtosecond laser writing. Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning with linear optical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信