{"title":"噬菌体通过塑造细菌群落影响土壤溶解有机质矿化","authors":"Xiaolei Zhao, Xiaolong Liang, Zhenke Zhu, Zhaofeng Yuan, Senxiang Yu, Yalong Liu, Jingkuan Wang, Kyle Mason-Jones, Yakov Kuzyakov, Jianping Chen, Tida Ge, Shuang Wang","doi":"10.1021/acs.est.4c08274","DOIUrl":null,"url":null,"abstract":"Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1–4 days) reduced CO<sub>2</sub> efflux rate by 13-21% at 18 °C and 3–30% at 23 °C but significantly (<i>p</i> < 0.05) increased by 4–29% at 18 °C and 9–41% at 23 °C after 6 days, raising cumulative CO<sub>2</sub> emissions by 14% at 18 °C and 21% at 23 °C. Phages decreased dominant bacterial taxa and increased bacterial community diversity (consistent with a “cull-the-winner” dynamic), thus altering the predicted microbiome functions. Specifically, phages enriched some taxa (such as <i>Pseudomonas</i>, <i>Anaerocolumna</i>, and <i>Caulobacter</i>) involved in degrading complex compounds and consequently promoted functions related to C cycling. Higher temperature facilitated phage-bacteria interactions, increased bacterial diversity, and enzyme activities, boosting DOM mineralization by 16%. Collectively, phages impact soil DOM mineralization by shifting microbial communities and functions, with moderate temperature changes modulating the magnitude of these processes but not qualitatively altering their behavior.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"6 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phages Affect Soil Dissolved Organic Matter Mineralization by Shaping Bacterial Communities\",\"authors\":\"Xiaolei Zhao, Xiaolong Liang, Zhenke Zhu, Zhaofeng Yuan, Senxiang Yu, Yalong Liu, Jingkuan Wang, Kyle Mason-Jones, Yakov Kuzyakov, Jianping Chen, Tida Ge, Shuang Wang\",\"doi\":\"10.1021/acs.est.4c08274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1–4 days) reduced CO<sub>2</sub> efflux rate by 13-21% at 18 °C and 3–30% at 23 °C but significantly (<i>p</i> < 0.05) increased by 4–29% at 18 °C and 9–41% at 23 °C after 6 days, raising cumulative CO<sub>2</sub> emissions by 14% at 18 °C and 21% at 23 °C. Phages decreased dominant bacterial taxa and increased bacterial community diversity (consistent with a “cull-the-winner” dynamic), thus altering the predicted microbiome functions. Specifically, phages enriched some taxa (such as <i>Pseudomonas</i>, <i>Anaerocolumna</i>, and <i>Caulobacter</i>) involved in degrading complex compounds and consequently promoted functions related to C cycling. Higher temperature facilitated phage-bacteria interactions, increased bacterial diversity, and enzyme activities, boosting DOM mineralization by 16%. Collectively, phages impact soil DOM mineralization by shifting microbial communities and functions, with moderate temperature changes modulating the magnitude of these processes but not qualitatively altering their behavior.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c08274\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08274","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1–4 days) reduced CO2 efflux rate by 13-21% at 18 °C and 3–30% at 23 °C but significantly (p < 0.05) increased by 4–29% at 18 °C and 9–41% at 23 °C after 6 days, raising cumulative CO2 emissions by 14% at 18 °C and 21% at 23 °C. Phages decreased dominant bacterial taxa and increased bacterial community diversity (consistent with a “cull-the-winner” dynamic), thus altering the predicted microbiome functions. Specifically, phages enriched some taxa (such as Pseudomonas, Anaerocolumna, and Caulobacter) involved in degrading complex compounds and consequently promoted functions related to C cycling. Higher temperature facilitated phage-bacteria interactions, increased bacterial diversity, and enzyme activities, boosting DOM mineralization by 16%. Collectively, phages impact soil DOM mineralization by shifting microbial communities and functions, with moderate temperature changes modulating the magnitude of these processes but not qualitatively altering their behavior.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.