Wenbin Zhao, Zhengfu Guo, Maoliang Zhang, Yutao Sun, Zhihui Cheng, Jujing Li, Donald B. Dingwell
{"title":"大陆俯冲与藏北深部碳循环","authors":"Wenbin Zhao, Zhengfu Guo, Maoliang Zhang, Yutao Sun, Zhihui Cheng, Jujing Li, Donald B. Dingwell","doi":"10.1029/2024jb028999","DOIUrl":null,"url":null,"abstract":"Degassing of volatiles within convergent plate margins, investigated through systematic variations in gas geochemistry, provides crucial insights into the recycling process, the lithospheric structure, and the dynamics of plateau growth. To date, such processes in the India-Asia continental collision zone remains poorly constrained in northern Tibet due to a dearth of detailed geochemical data on volatiles. Here, we report new data on chemical compositions and He–C isotopic ratios of hydrothermal volatiles in the northern plateau. CO<sub>2</sub>-rich samples exhibit elevated <sup>3</sup>He/<sup>4</sup>He ratios (0.11 <i>R</i><sub>A</sub>–0.39 <i>R</i><sub>A</sub>) compared to crustal values, as well as displaying heavy <i>δ</i><sup>13</sup>C (−4.66–0.02‰) and high CO<sub>2</sub>/<sup>3</sup>He ratios ((36–9,400) × 10<sup>9</sup>), indicating in summary the occurrence of carbonate in the mantle-derived components. We have developed a coupled He–C isotope model incorporating depleted mantle (DM), recycled carbonate (RC), and crustal carbon endmember (CCE) reservoirs to explore quantitatively the nature of the hydrothermal volatiles emitted. The results of model calculations reveal an increasing proportion of RC together with a decreasing proportion of CCE from south to north that is accompanied by an increasing contribution from DM, all suggesting the presence of a carbonated mantle beneath northern Tibet. Degassing of helium from hydrothermal activities exhibits relatively high fluxes of total <sup>3</sup>He (10<sup>4</sup>–10<sup>5</sup> atoms/m<sup>2</sup>/s), indicating a tectonically active degassing of volatiles in the Tibetan Plateau under ongoing continental convergence between India and Asia. Systematic variations in He–C isotopes, mantle helium fluxes and RC/CEE proportions along hydrothermal activities spanning from the Himalayas to the Qaidam-Gonghe basin are consistent with a dual continental subduction model acting beneath the whole Tibetan Plateau.","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"74 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continental Subduction and the Deep Carbon Cycle in Northern Tibet\",\"authors\":\"Wenbin Zhao, Zhengfu Guo, Maoliang Zhang, Yutao Sun, Zhihui Cheng, Jujing Li, Donald B. Dingwell\",\"doi\":\"10.1029/2024jb028999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Degassing of volatiles within convergent plate margins, investigated through systematic variations in gas geochemistry, provides crucial insights into the recycling process, the lithospheric structure, and the dynamics of plateau growth. To date, such processes in the India-Asia continental collision zone remains poorly constrained in northern Tibet due to a dearth of detailed geochemical data on volatiles. Here, we report new data on chemical compositions and He–C isotopic ratios of hydrothermal volatiles in the northern plateau. CO<sub>2</sub>-rich samples exhibit elevated <sup>3</sup>He/<sup>4</sup>He ratios (0.11 <i>R</i><sub>A</sub>–0.39 <i>R</i><sub>A</sub>) compared to crustal values, as well as displaying heavy <i>δ</i><sup>13</sup>C (−4.66–0.02‰) and high CO<sub>2</sub>/<sup>3</sup>He ratios ((36–9,400) × 10<sup>9</sup>), indicating in summary the occurrence of carbonate in the mantle-derived components. We have developed a coupled He–C isotope model incorporating depleted mantle (DM), recycled carbonate (RC), and crustal carbon endmember (CCE) reservoirs to explore quantitatively the nature of the hydrothermal volatiles emitted. The results of model calculations reveal an increasing proportion of RC together with a decreasing proportion of CCE from south to north that is accompanied by an increasing contribution from DM, all suggesting the presence of a carbonated mantle beneath northern Tibet. Degassing of helium from hydrothermal activities exhibits relatively high fluxes of total <sup>3</sup>He (10<sup>4</sup>–10<sup>5</sup> atoms/m<sup>2</sup>/s), indicating a tectonically active degassing of volatiles in the Tibetan Plateau under ongoing continental convergence between India and Asia. Systematic variations in He–C isotopes, mantle helium fluxes and RC/CEE proportions along hydrothermal activities spanning from the Himalayas to the Qaidam-Gonghe basin are consistent with a dual continental subduction model acting beneath the whole Tibetan Plateau.\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024jb028999\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024jb028999","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Continental Subduction and the Deep Carbon Cycle in Northern Tibet
Degassing of volatiles within convergent plate margins, investigated through systematic variations in gas geochemistry, provides crucial insights into the recycling process, the lithospheric structure, and the dynamics of plateau growth. To date, such processes in the India-Asia continental collision zone remains poorly constrained in northern Tibet due to a dearth of detailed geochemical data on volatiles. Here, we report new data on chemical compositions and He–C isotopic ratios of hydrothermal volatiles in the northern plateau. CO2-rich samples exhibit elevated 3He/4He ratios (0.11 RA–0.39 RA) compared to crustal values, as well as displaying heavy δ13C (−4.66–0.02‰) and high CO2/3He ratios ((36–9,400) × 109), indicating in summary the occurrence of carbonate in the mantle-derived components. We have developed a coupled He–C isotope model incorporating depleted mantle (DM), recycled carbonate (RC), and crustal carbon endmember (CCE) reservoirs to explore quantitatively the nature of the hydrothermal volatiles emitted. The results of model calculations reveal an increasing proportion of RC together with a decreasing proportion of CCE from south to north that is accompanied by an increasing contribution from DM, all suggesting the presence of a carbonated mantle beneath northern Tibet. Degassing of helium from hydrothermal activities exhibits relatively high fluxes of total 3He (104–105 atoms/m2/s), indicating a tectonically active degassing of volatiles in the Tibetan Plateau under ongoing continental convergence between India and Asia. Systematic variations in He–C isotopes, mantle helium fluxes and RC/CEE proportions along hydrothermal activities spanning from the Himalayas to the Qaidam-Gonghe basin are consistent with a dual continental subduction model acting beneath the whole Tibetan Plateau.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.