Di Zhang, Keqing Liu, Chengcheng Feng, Xianmin Wang, Ayat J. S. Al-Azab, Han Lu, Haiyan Ma, Ying Tang, Li Xu, Takeshi Ohama, Fantao Kong
{"title":"普通小球藻对新型抗菌纳米颗粒氰丙烯酸乙酯聚合物的生理和转录组反应","authors":"Di Zhang, Keqing Liu, Chengcheng Feng, Xianmin Wang, Ayat J. S. Al-Azab, Han Lu, Haiyan Ma, Ying Tang, Li Xu, Takeshi Ohama, Fantao Kong","doi":"10.1039/d4en00861h","DOIUrl":null,"url":null,"abstract":"The ethyl cyanoacrylate nanoparticles (ECA-NPs) have recently been reported as promising novel antibacterial NPs capable of inhibiting the growth of several Gram-positive and Gram-negative bacteria. However, the effects of ECA-NPs on microalgae, which are primary producers in aquatic ecosystems, remain unknown. In this study, we examined the effects of ECA-NPs on the microalga Chlorella vulgaris (Chlorella) at both cellular and molecular levels. A high concentration of ECA-NPs (100 μg/mL) exhibited strong growth inhibitory effects on Chlorella. In the ECA-NPs-treated cells, transmission electron microscope (TEM) observations showed the prominent internalization of ECA-NPs in the periplasmic space and vacuoles. Moreover, notable morphological changes such as a thinner cell wall, stacked thylakoid structure, and plasmolysis were observed. ECA-NPs exposed Chlorella secreted more extracellular polymeric substances (EPS) and accumulated more storage lipids (mainly triacylglycerol, TAG) compared to the control. However, the contents of total fatty acids and starch were decreased, and photosynthetic activity was reduced. In addition, the content of intracellular reactive oxygen species (ROS) and the activities of antioxidant enzymes in ECA-NPs-treated cells were significantly higher than in the control. Transcriptomic analysis revealed the downregulation of genes that are involved in drug binding/catabolic process, chemical stimulus detection, and cell wall component catabolic process (chitin catabolism), while genes involved in photosynthetic membrane and plastid thylakoid were upregulated. These results indicated that the effects of ECA-NPs exposure are not limited to specific metabolic pathways, but rather influence metabolic pathways across the entire cell. This study also provided new insights into the potential toxic effects associated with cyanoacrylate NPs in phytoplankton.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"24 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological and transcriptomic responses of Chlorella vulgaris to novel antibacterial nanoparticles of ethyl cyanoacrylate polymer\",\"authors\":\"Di Zhang, Keqing Liu, Chengcheng Feng, Xianmin Wang, Ayat J. S. Al-Azab, Han Lu, Haiyan Ma, Ying Tang, Li Xu, Takeshi Ohama, Fantao Kong\",\"doi\":\"10.1039/d4en00861h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ethyl cyanoacrylate nanoparticles (ECA-NPs) have recently been reported as promising novel antibacterial NPs capable of inhibiting the growth of several Gram-positive and Gram-negative bacteria. However, the effects of ECA-NPs on microalgae, which are primary producers in aquatic ecosystems, remain unknown. In this study, we examined the effects of ECA-NPs on the microalga Chlorella vulgaris (Chlorella) at both cellular and molecular levels. A high concentration of ECA-NPs (100 μg/mL) exhibited strong growth inhibitory effects on Chlorella. In the ECA-NPs-treated cells, transmission electron microscope (TEM) observations showed the prominent internalization of ECA-NPs in the periplasmic space and vacuoles. Moreover, notable morphological changes such as a thinner cell wall, stacked thylakoid structure, and plasmolysis were observed. ECA-NPs exposed Chlorella secreted more extracellular polymeric substances (EPS) and accumulated more storage lipids (mainly triacylglycerol, TAG) compared to the control. However, the contents of total fatty acids and starch were decreased, and photosynthetic activity was reduced. In addition, the content of intracellular reactive oxygen species (ROS) and the activities of antioxidant enzymes in ECA-NPs-treated cells were significantly higher than in the control. Transcriptomic analysis revealed the downregulation of genes that are involved in drug binding/catabolic process, chemical stimulus detection, and cell wall component catabolic process (chitin catabolism), while genes involved in photosynthetic membrane and plastid thylakoid were upregulated. These results indicated that the effects of ECA-NPs exposure are not limited to specific metabolic pathways, but rather influence metabolic pathways across the entire cell. This study also provided new insights into the potential toxic effects associated with cyanoacrylate NPs in phytoplankton.\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00861h\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00861h","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Physiological and transcriptomic responses of Chlorella vulgaris to novel antibacterial nanoparticles of ethyl cyanoacrylate polymer
The ethyl cyanoacrylate nanoparticles (ECA-NPs) have recently been reported as promising novel antibacterial NPs capable of inhibiting the growth of several Gram-positive and Gram-negative bacteria. However, the effects of ECA-NPs on microalgae, which are primary producers in aquatic ecosystems, remain unknown. In this study, we examined the effects of ECA-NPs on the microalga Chlorella vulgaris (Chlorella) at both cellular and molecular levels. A high concentration of ECA-NPs (100 μg/mL) exhibited strong growth inhibitory effects on Chlorella. In the ECA-NPs-treated cells, transmission electron microscope (TEM) observations showed the prominent internalization of ECA-NPs in the periplasmic space and vacuoles. Moreover, notable morphological changes such as a thinner cell wall, stacked thylakoid structure, and plasmolysis were observed. ECA-NPs exposed Chlorella secreted more extracellular polymeric substances (EPS) and accumulated more storage lipids (mainly triacylglycerol, TAG) compared to the control. However, the contents of total fatty acids and starch were decreased, and photosynthetic activity was reduced. In addition, the content of intracellular reactive oxygen species (ROS) and the activities of antioxidant enzymes in ECA-NPs-treated cells were significantly higher than in the control. Transcriptomic analysis revealed the downregulation of genes that are involved in drug binding/catabolic process, chemical stimulus detection, and cell wall component catabolic process (chitin catabolism), while genes involved in photosynthetic membrane and plastid thylakoid were upregulated. These results indicated that the effects of ECA-NPs exposure are not limited to specific metabolic pathways, but rather influence metabolic pathways across the entire cell. This study also provided new insights into the potential toxic effects associated with cyanoacrylate NPs in phytoplankton.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis