{"title":"壳聚糖修饰的磁性生物炭对全氟辛酸的吸附:基于响应面法的建模、性能和机理","authors":"Bhavini Saawarn, Byomkesh Mahanty, Subrata Hait","doi":"10.1016/j.envpol.2025.125734","DOIUrl":null,"url":null,"abstract":"Perfluorooctanoic acid (PFOA) removal has gained significant attention due to its environmental stability and potential toxicity. This study aims to synthesize a chitosan-modified magnetic biochar (CS_MBC) for efficient PFOA removal from aqueous solutions. Various CS loading ratios (0.25:1, 0.5:1, and 1:1) were explored to determine the optimal adsorbent, with preliminary experiments exhibiting superior performance of CS<sub>1</sub>_MBC. To explore the impact of various experimental conditions (pH, adsorbent dose, time, and initial PFOA concentrations) on PFOA removal and optimize these parameters, central composite design of response surface methodology was applied. Statistical analysis of variance was conducted to assess the model’s adequacy, which demonstrated a strong correlation between experimental results and the model. The predicted optimal conditions for achieving maximum PFOA removal (∼94%) were pH 4, 120 mg/L dose, 60 min time, and 20 mg/L PFOA concentration. The kinetics and isotherm studies revealed that the pseudo-second-order (R<sup>2</sup>=0.9996) and Redlich-Peterson (R<sup>2</sup>=0.999) models better described PFOA adsorption, with Langmuir maximum adsorption capacity of ∼517 mg/g. Thermodynamic study confirmed the spontaneous, endothermic, and physisorptive nature of PFOA adsorption, with electrostatic and hydrophobic interactions and hydrogen bonding governing the process. Further, the fixed-bed column experiment was conducted to evaluate the effectiveness of CS<sub>1</sub>_MBC for practical applications, which demonstrated the maximum experimental adsorption capacity of 39.63 mg/g. The breakthrough data showed an excellent fit with both the Thomas and Yoon-Nelson models, with a high correlation coefficient (R<sup>2</sup>=0.99). Therefore, this research underscores the potential of CS_MBC as an efficient adsorbent for mitigating PFOA contamination in aqueous environments.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"74 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of perfluorooctanoic acid from aqueous matrices onto chitosan-modified magnetic biochar: Response surface methodology-based modeling, performance, and mechanism\",\"authors\":\"Bhavini Saawarn, Byomkesh Mahanty, Subrata Hait\",\"doi\":\"10.1016/j.envpol.2025.125734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perfluorooctanoic acid (PFOA) removal has gained significant attention due to its environmental stability and potential toxicity. This study aims to synthesize a chitosan-modified magnetic biochar (CS_MBC) for efficient PFOA removal from aqueous solutions. Various CS loading ratios (0.25:1, 0.5:1, and 1:1) were explored to determine the optimal adsorbent, with preliminary experiments exhibiting superior performance of CS<sub>1</sub>_MBC. To explore the impact of various experimental conditions (pH, adsorbent dose, time, and initial PFOA concentrations) on PFOA removal and optimize these parameters, central composite design of response surface methodology was applied. Statistical analysis of variance was conducted to assess the model’s adequacy, which demonstrated a strong correlation between experimental results and the model. The predicted optimal conditions for achieving maximum PFOA removal (∼94%) were pH 4, 120 mg/L dose, 60 min time, and 20 mg/L PFOA concentration. The kinetics and isotherm studies revealed that the pseudo-second-order (R<sup>2</sup>=0.9996) and Redlich-Peterson (R<sup>2</sup>=0.999) models better described PFOA adsorption, with Langmuir maximum adsorption capacity of ∼517 mg/g. Thermodynamic study confirmed the spontaneous, endothermic, and physisorptive nature of PFOA adsorption, with electrostatic and hydrophobic interactions and hydrogen bonding governing the process. Further, the fixed-bed column experiment was conducted to evaluate the effectiveness of CS<sub>1</sub>_MBC for practical applications, which demonstrated the maximum experimental adsorption capacity of 39.63 mg/g. The breakthrough data showed an excellent fit with both the Thomas and Yoon-Nelson models, with a high correlation coefficient (R<sup>2</sup>=0.99). Therefore, this research underscores the potential of CS_MBC as an efficient adsorbent for mitigating PFOA contamination in aqueous environments.\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envpol.2025.125734\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125734","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Adsorption of perfluorooctanoic acid from aqueous matrices onto chitosan-modified magnetic biochar: Response surface methodology-based modeling, performance, and mechanism
Perfluorooctanoic acid (PFOA) removal has gained significant attention due to its environmental stability and potential toxicity. This study aims to synthesize a chitosan-modified magnetic biochar (CS_MBC) for efficient PFOA removal from aqueous solutions. Various CS loading ratios (0.25:1, 0.5:1, and 1:1) were explored to determine the optimal adsorbent, with preliminary experiments exhibiting superior performance of CS1_MBC. To explore the impact of various experimental conditions (pH, adsorbent dose, time, and initial PFOA concentrations) on PFOA removal and optimize these parameters, central composite design of response surface methodology was applied. Statistical analysis of variance was conducted to assess the model’s adequacy, which demonstrated a strong correlation between experimental results and the model. The predicted optimal conditions for achieving maximum PFOA removal (∼94%) were pH 4, 120 mg/L dose, 60 min time, and 20 mg/L PFOA concentration. The kinetics and isotherm studies revealed that the pseudo-second-order (R2=0.9996) and Redlich-Peterson (R2=0.999) models better described PFOA adsorption, with Langmuir maximum adsorption capacity of ∼517 mg/g. Thermodynamic study confirmed the spontaneous, endothermic, and physisorptive nature of PFOA adsorption, with electrostatic and hydrophobic interactions and hydrogen bonding governing the process. Further, the fixed-bed column experiment was conducted to evaluate the effectiveness of CS1_MBC for practical applications, which demonstrated the maximum experimental adsorption capacity of 39.63 mg/g. The breakthrough data showed an excellent fit with both the Thomas and Yoon-Nelson models, with a high correlation coefficient (R2=0.99). Therefore, this research underscores the potential of CS_MBC as an efficient adsorbent for mitigating PFOA contamination in aqueous environments.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.