的三次狄拉克算子 $$U_q({\mathfrak {sl}}_2)$$

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Andrey Krutov, Pavle Pandžić
{"title":"的三次狄拉克算子 $$U_q({\\mathfrak {sl}}_2)$$","authors":"Andrey Krutov,&nbsp;Pavle Pandžić","doi":"10.1007/s00006-025-01372-z","DOIUrl":null,"url":null,"abstract":"<div><p>We construct the <i>q</i>-deformed Clifford algebra of <span>\\(\\mathfrak {sl}_2\\)</span> and study its properties. This allows us to define the <i>q</i>-deformed noncommutative Weil algebra <span>\\(\\mathcal {W}_q(\\mathfrak {sl}_2)\\)</span> for <span>\\(U_q(\\mathfrak {sl}_2)\\)</span> and the corresponding cubic Dirac operator <span>\\(D_q\\)</span>. In the classical case this was done by Alekseev and Meinrenken in 2000. We show that the cubic Dirac operator <span>\\(D_q\\)</span> is invariant with respect to the <span>\\(U_q({\\mathfrak {sl}}_2)\\)</span>-action and <span>\\(*\\)</span>-structures on <span>\\(\\mathcal {W}_q(\\mathfrak {sl}_2)\\)</span>, moreover, the square of <span>\\(D_q\\)</span> is central in <span>\\(\\mathcal {W}_q(\\mathfrak {sl}_2)\\)</span>. We compute the spectrum of the cubic element on finite-dimensional and Verma modules of <span>\\(U_q(\\mathfrak {sl}_2)\\)</span> and the corresponding Dirac cohomology.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cubic Dirac operator for \\\\(U_q({\\\\mathfrak {sl}}_2)\\\\)\",\"authors\":\"Andrey Krutov,&nbsp;Pavle Pandžić\",\"doi\":\"10.1007/s00006-025-01372-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct the <i>q</i>-deformed Clifford algebra of <span>\\\\(\\\\mathfrak {sl}_2\\\\)</span> and study its properties. This allows us to define the <i>q</i>-deformed noncommutative Weil algebra <span>\\\\(\\\\mathcal {W}_q(\\\\mathfrak {sl}_2)\\\\)</span> for <span>\\\\(U_q(\\\\mathfrak {sl}_2)\\\\)</span> and the corresponding cubic Dirac operator <span>\\\\(D_q\\\\)</span>. In the classical case this was done by Alekseev and Meinrenken in 2000. We show that the cubic Dirac operator <span>\\\\(D_q\\\\)</span> is invariant with respect to the <span>\\\\(U_q({\\\\mathfrak {sl}}_2)\\\\)</span>-action and <span>\\\\(*\\\\)</span>-structures on <span>\\\\(\\\\mathcal {W}_q(\\\\mathfrak {sl}_2)\\\\)</span>, moreover, the square of <span>\\\\(D_q\\\\)</span> is central in <span>\\\\(\\\\mathcal {W}_q(\\\\mathfrak {sl}_2)\\\\)</span>. We compute the spectrum of the cubic element on finite-dimensional and Verma modules of <span>\\\\(U_q(\\\\mathfrak {sl}_2)\\\\)</span> and the corresponding Dirac cohomology.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01372-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01372-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

构造了\(\mathfrak {sl}_2\)的q-变形Clifford代数,并研究了它的性质。这允许我们为\(U_q(\mathfrak {sl}_2)\)定义q变形的非交换Weil代数\(\mathcal {W}_q(\mathfrak {sl}_2)\)和相应的三次Dirac算子\(D_q\)。在经典案例中,这是由Alekseev和Meinrenken在2000年完成的。我们证明了三次狄拉克算子\(D_q\)对于\(\mathcal {W}_q(\mathfrak {sl}_2)\)上的\(U_q({\mathfrak {sl}}_2)\) -作用和\(*\) -结构是不变的,并且在\(\mathcal {W}_q(\mathfrak {sl}_2)\)上\(D_q\)的平方是中心的。我们计算了\(U_q(\mathfrak {sl}_2)\)的有限维和Verma模上的三次元谱以及相应的狄拉克上同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cubic Dirac operator for \(U_q({\mathfrak {sl}}_2)\)

We construct the q-deformed Clifford algebra of \(\mathfrak {sl}_2\) and study its properties. This allows us to define the q-deformed noncommutative Weil algebra \(\mathcal {W}_q(\mathfrak {sl}_2)\) for \(U_q(\mathfrak {sl}_2)\) and the corresponding cubic Dirac operator \(D_q\). In the classical case this was done by Alekseev and Meinrenken in 2000. We show that the cubic Dirac operator \(D_q\) is invariant with respect to the \(U_q({\mathfrak {sl}}_2)\)-action and \(*\)-structures on \(\mathcal {W}_q(\mathfrak {sl}_2)\), moreover, the square of \(D_q\) is central in \(\mathcal {W}_q(\mathfrak {sl}_2)\). We compute the spectrum of the cubic element on finite-dimensional and Verma modules of \(U_q(\mathfrak {sl}_2)\) and the corresponding Dirac cohomology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信