二维BA2PbI4/InSe钙钛矿异质结构和超晶格中的能带结构工程

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Yujia Gao, Tengcheng Huang, Zhuxia Wu, Tingting Shi, Weiguang Xie
{"title":"二维BA2PbI4/InSe钙钛矿异质结构和超晶格中的能带结构工程","authors":"Yujia Gao, Tengcheng Huang, Zhuxia Wu, Tingting Shi, Weiguang Xie","doi":"10.1063/5.0245038","DOIUrl":null,"url":null,"abstract":"Periodic stacking of two van der Waals materials enables the realization of superlattice structures with artificial design of band structure. Two-dimensional perovskites offer structural flexibility for engineering of band structure that can result in superlattice structures. Here, InSe/BA2PbI4 perovskite heterostructure and superlattice are explored by first principles calculation. Both the heterostructure and superlattice show a similar direct bandgap structure. As the concentration of VBA defects increases, the bandgap of the heterostructure and superlattices generally increase in different manners due to different interfacial interaction. The introduction of VI defects leads to the formation of a type-I band alignment, contrasting with the type-II band alignment resulting from VBA defects. These findings offer valuable insights into the defect-driven modulation of electronic properties in semiconductor superlattices and heterostructures, providing opportunities to tailor them for various optoelectronic applications.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"105 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Band structure engineering in 2D BA2PbI4/InSe perovskite heterostructures and superlattices\",\"authors\":\"Yujia Gao, Tengcheng Huang, Zhuxia Wu, Tingting Shi, Weiguang Xie\",\"doi\":\"10.1063/5.0245038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic stacking of two van der Waals materials enables the realization of superlattice structures with artificial design of band structure. Two-dimensional perovskites offer structural flexibility for engineering of band structure that can result in superlattice structures. Here, InSe/BA2PbI4 perovskite heterostructure and superlattice are explored by first principles calculation. Both the heterostructure and superlattice show a similar direct bandgap structure. As the concentration of VBA defects increases, the bandgap of the heterostructure and superlattices generally increase in different manners due to different interfacial interaction. The introduction of VI defects leads to the formation of a type-I band alignment, contrasting with the type-II band alignment resulting from VBA defects. These findings offer valuable insights into the defect-driven modulation of electronic properties in semiconductor superlattices and heterostructures, providing opportunities to tailor them for various optoelectronic applications.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0245038\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0245038","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

两种范德华材料的周期性叠加可以通过人工设计能带结构来实现超晶格结构。二维钙钛矿为能带结构工程提供了结构灵活性,可以产生超晶格结构。本文采用第一性原理计算方法研究了InSe/BA2PbI4钙钛矿的异质结构和超晶格。异质结构和超晶格均表现出相似的直接带隙结构。随着VBA缺陷浓度的增加,异质结构和超晶格的带隙由于界面相互作用的不同而以不同的方式增加。VI缺陷的引入导致形成i型带对准,与VBA缺陷形成ii型带对准形成对比。这些发现为半导体超晶格和异质结构中缺陷驱动的电子特性调制提供了有价值的见解,为各种光电应用提供了定制它们的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Band structure engineering in 2D BA2PbI4/InSe perovskite heterostructures and superlattices
Periodic stacking of two van der Waals materials enables the realization of superlattice structures with artificial design of band structure. Two-dimensional perovskites offer structural flexibility for engineering of band structure that can result in superlattice structures. Here, InSe/BA2PbI4 perovskite heterostructure and superlattice are explored by first principles calculation. Both the heterostructure and superlattice show a similar direct bandgap structure. As the concentration of VBA defects increases, the bandgap of the heterostructure and superlattices generally increase in different manners due to different interfacial interaction. The introduction of VI defects leads to the formation of a type-I band alignment, contrasting with the type-II band alignment resulting from VBA defects. These findings offer valuable insights into the defect-driven modulation of electronic properties in semiconductor superlattices and heterostructures, providing opportunities to tailor them for various optoelectronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信