Taikyu Kim, Seung Ho Ryu, Jihoon Jeon, Taeseok Kim, In-Hwan Baek, Seong Keun Kim
{"title":"通过钝化多晶HfO2栅极电介质表面,在超薄In2O3晶体管中获得了147.5 cm2/Vs的超高场效应迁移率","authors":"Taikyu Kim, Seung Ho Ryu, Jihoon Jeon, Taeseok Kim, In-Hwan Baek, Seong Keun Kim","doi":"10.1063/5.0240110","DOIUrl":null,"url":null,"abstract":"This study presents considerable improvements in the electrical characteristics of atomic-layer-deposited 3-nm-thick In2O3 thin-film transistors (TFTs), which were achieved by introducing a 2-nm-thick amorphous Al2O3 interfacial layer to passivate the surface of a polycrystalline HfO2 gate dielectric. The resulting devices exhibited exceptional electrical characteristics, including an ultrahigh field-effect mobility (μFE) of approximately 147.5 ± 16.6 cm2/V s, subthreshold swing of 103.7 ± 9.1 mV/dec, and threshold voltage (VTH) of 0.5 ± 0.1 V. These enhancement-mode devices represent increases of more than threefold in μFE compared to devices without an amorphous passivation layer. This is despite all the fabrication processes being identical, except for the introduction of the Al2O3 interfacial layer. This improvement can be primarily attributed to the reduced electron scattering through suppressed remote Coulomb interactions. Furthermore, the In2O3 TFTs exhibited enhanced operational stability, showing minimal VTH shifts of 0.15 and −0.01 V under positive and negative bias-stress conditions, respectively. The findings of this study emphasize the critical role of the surface passivation of polycrystalline HfO2 dielectrics in improving the electrical performance of ultrathin In2O3 TFTs.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"74 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh field-effect mobility of 147.5 cm2/Vs in ultrathin In2O3 transistors via passivating the surface of polycrystalline HfO2 gate dielectrics\",\"authors\":\"Taikyu Kim, Seung Ho Ryu, Jihoon Jeon, Taeseok Kim, In-Hwan Baek, Seong Keun Kim\",\"doi\":\"10.1063/5.0240110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents considerable improvements in the electrical characteristics of atomic-layer-deposited 3-nm-thick In2O3 thin-film transistors (TFTs), which were achieved by introducing a 2-nm-thick amorphous Al2O3 interfacial layer to passivate the surface of a polycrystalline HfO2 gate dielectric. The resulting devices exhibited exceptional electrical characteristics, including an ultrahigh field-effect mobility (μFE) of approximately 147.5 ± 16.6 cm2/V s, subthreshold swing of 103.7 ± 9.1 mV/dec, and threshold voltage (VTH) of 0.5 ± 0.1 V. These enhancement-mode devices represent increases of more than threefold in μFE compared to devices without an amorphous passivation layer. This is despite all the fabrication processes being identical, except for the introduction of the Al2O3 interfacial layer. This improvement can be primarily attributed to the reduced electron scattering through suppressed remote Coulomb interactions. Furthermore, the In2O3 TFTs exhibited enhanced operational stability, showing minimal VTH shifts of 0.15 and −0.01 V under positive and negative bias-stress conditions, respectively. The findings of this study emphasize the critical role of the surface passivation of polycrystalline HfO2 dielectrics in improving the electrical performance of ultrathin In2O3 TFTs.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0240110\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0240110","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Ultrahigh field-effect mobility of 147.5 cm2/Vs in ultrathin In2O3 transistors via passivating the surface of polycrystalline HfO2 gate dielectrics
This study presents considerable improvements in the electrical characteristics of atomic-layer-deposited 3-nm-thick In2O3 thin-film transistors (TFTs), which were achieved by introducing a 2-nm-thick amorphous Al2O3 interfacial layer to passivate the surface of a polycrystalline HfO2 gate dielectric. The resulting devices exhibited exceptional electrical characteristics, including an ultrahigh field-effect mobility (μFE) of approximately 147.5 ± 16.6 cm2/V s, subthreshold swing of 103.7 ± 9.1 mV/dec, and threshold voltage (VTH) of 0.5 ± 0.1 V. These enhancement-mode devices represent increases of more than threefold in μFE compared to devices without an amorphous passivation layer. This is despite all the fabrication processes being identical, except for the introduction of the Al2O3 interfacial layer. This improvement can be primarily attributed to the reduced electron scattering through suppressed remote Coulomb interactions. Furthermore, the In2O3 TFTs exhibited enhanced operational stability, showing minimal VTH shifts of 0.15 and −0.01 V under positive and negative bias-stress conditions, respectively. The findings of this study emphasize the critical role of the surface passivation of polycrystalline HfO2 dielectrics in improving the electrical performance of ultrathin In2O3 TFTs.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.