{"title":"动态光合标记和碳定位质谱监测体内Rubisco碳同化率。","authors":"Yogeswari Rajarathinam,Luisa Wittemeier,Kirstin Gutekunst,Martin Hagemann,Joachim Kopka","doi":"10.1093/plphys/kiaf020","DOIUrl":null,"url":null,"abstract":"RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions. Hence, RUBISCO activity that fixes carbon into the 1-C position of 3PGA and Calvin-Benson-Bassham (CBB) cycle activities that redistribute carbon into its 2-C and 3-C positions are not resolved. This study aims to develop technology that differentiates between these activities. In source fragmentation of gas chromatography-mass spectrometry (GC-MS) enables paired isotopologue distribution analyses of fragmented substructures and the complete metabolite structure. GC-MS measurements after dynamic photosynthetic 13CO2 labelling allowed quantification of the 13C fractional enrichment (E13C) and molar carbon assimilation rates (A13C) at carbon position 1-C of 3PGA by combining E13C from carbon positions 2,3-C2 and 1,2,3-C3 with quantification of 3PGA concentrations. We validated the procedure using two GC-time of flight (TOF)-MS instruments, operated at nominal or high mass resolution, and tested the expected 3PGA positional labelling by in vivo glycolysis of positional labelled glucose isotopomers. Mutant analysis of the highly divergent GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASEs (GAPDH1 and 2) from Synechocystis sp. PCC 6803 revealed full inactivation of the CBB cycle with maintained RUBISCO activity in Δgapdh2 and a CBB cycle modulating role of GAPDH1 under fluctuating CO2 supply. RUBISCO activity in the CBB-deficient Δgapdh2 can re-assimilate CO2 released by catabolic pathways. We suggest that RUBISCO activity in Synechocystis can scavenge carbon lost through the pentose phosphate pathway or other cellular decarboxylation reactions.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"6 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic photosynthetic labeling and carbon-positional mass spectrometry monitor in vivo Rubisco carbon assimilation rates.\",\"authors\":\"Yogeswari Rajarathinam,Luisa Wittemeier,Kirstin Gutekunst,Martin Hagemann,Joachim Kopka\",\"doi\":\"10.1093/plphys/kiaf020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions. Hence, RUBISCO activity that fixes carbon into the 1-C position of 3PGA and Calvin-Benson-Bassham (CBB) cycle activities that redistribute carbon into its 2-C and 3-C positions are not resolved. This study aims to develop technology that differentiates between these activities. In source fragmentation of gas chromatography-mass spectrometry (GC-MS) enables paired isotopologue distribution analyses of fragmented substructures and the complete metabolite structure. GC-MS measurements after dynamic photosynthetic 13CO2 labelling allowed quantification of the 13C fractional enrichment (E13C) and molar carbon assimilation rates (A13C) at carbon position 1-C of 3PGA by combining E13C from carbon positions 2,3-C2 and 1,2,3-C3 with quantification of 3PGA concentrations. We validated the procedure using two GC-time of flight (TOF)-MS instruments, operated at nominal or high mass resolution, and tested the expected 3PGA positional labelling by in vivo glycolysis of positional labelled glucose isotopomers. Mutant analysis of the highly divergent GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASEs (GAPDH1 and 2) from Synechocystis sp. PCC 6803 revealed full inactivation of the CBB cycle with maintained RUBISCO activity in Δgapdh2 and a CBB cycle modulating role of GAPDH1 under fluctuating CO2 supply. RUBISCO activity in the CBB-deficient Δgapdh2 can re-assimilate CO2 released by catabolic pathways. We suggest that RUBISCO activity in Synechocystis can scavenge carbon lost through the pentose phosphate pathway or other cellular decarboxylation reactions.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiaf020\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Dynamic photosynthetic labeling and carbon-positional mass spectrometry monitor in vivo Rubisco carbon assimilation rates.
RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions. Hence, RUBISCO activity that fixes carbon into the 1-C position of 3PGA and Calvin-Benson-Bassham (CBB) cycle activities that redistribute carbon into its 2-C and 3-C positions are not resolved. This study aims to develop technology that differentiates between these activities. In source fragmentation of gas chromatography-mass spectrometry (GC-MS) enables paired isotopologue distribution analyses of fragmented substructures and the complete metabolite structure. GC-MS measurements after dynamic photosynthetic 13CO2 labelling allowed quantification of the 13C fractional enrichment (E13C) and molar carbon assimilation rates (A13C) at carbon position 1-C of 3PGA by combining E13C from carbon positions 2,3-C2 and 1,2,3-C3 with quantification of 3PGA concentrations. We validated the procedure using two GC-time of flight (TOF)-MS instruments, operated at nominal or high mass resolution, and tested the expected 3PGA positional labelling by in vivo glycolysis of positional labelled glucose isotopomers. Mutant analysis of the highly divergent GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASEs (GAPDH1 and 2) from Synechocystis sp. PCC 6803 revealed full inactivation of the CBB cycle with maintained RUBISCO activity in Δgapdh2 and a CBB cycle modulating role of GAPDH1 under fluctuating CO2 supply. RUBISCO activity in the CBB-deficient Δgapdh2 can re-assimilate CO2 released by catabolic pathways. We suggest that RUBISCO activity in Synechocystis can scavenge carbon lost through the pentose phosphate pathway or other cellular decarboxylation reactions.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.