通过调整晶格氧活性和氧空位,在氧化锰催化剂中进行战略性金属掺杂,实现高产 2,5-呋喃二甲酸的生产

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qing Liu, Yuan Gong, Jing Zeng, Yinghong Zhao, Jia Lv, Zhicheng Jiang, Changwei Hu, Yingdong Zhou
{"title":"通过调整晶格氧活性和氧空位,在氧化锰催化剂中进行战略性金属掺杂,实现高产 2,5-呋喃二甲酸的生产","authors":"Qing Liu, Yuan Gong, Jing Zeng, Yinghong Zhao, Jia Lv, Zhicheng Jiang, Changwei Hu, Yingdong Zhou","doi":"10.1021/acssuschemeng.4c09055","DOIUrl":null,"url":null,"abstract":"2,5-Furandicarboxylic acid (FDCA), derived from the oxidation of 5-hydroxymethylfurfural (HMF), is emerging as a viable biomass-based monomer for bioplastic production, offering a sustainable alternative to a petroleum-derived monomer. This study systematically investigates lattice oxygen (O<sub>L</sub>) activation in Mn-based oxides through doping with transition metals (Ce, Zr, La, and Sm) to enhance the aerobic oxidation of HMF to FDCA. Among the prepared catalysts, Mn<sub>6</sub>Ce<sub>1</sub>O<sub><i>x</i></sub> (Mn/Ce molar ratio of 6), with the highest surface oxygen vacancy (O<sub>V</sub>) concentration and activated O<sub>L</sub>, achieved a high FDCA yield of 97.2% with a generation rate of 1520 μmol<sub>FDCA</sub> g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> under mild conditions (120 °C, 1 MPa O<sub>2</sub>, 8 h). Catalyst characterization results revealed that the metal dopants modulated the strength of Mn–O bonds, thereby influencing O<sub>L</sub> activity and O<sub>V</sub> concentration. Incorporating Ce ions into the MnO<sub><i>x</i></sub> lattice weakened Mn–O bond strength, enhancing O<sub>L</sub> mobility and promoting O<sub>V</sub> formation. This reactive O<sub>L</sub>, acting as the active oxygen species for HMF oxidation, could be efficiently regenerated via the Mars–van Krevelen mechanism. The abundant O<sub>V</sub> on Mn<sub>6</sub>Ce<sub>1</sub>O<sub><i>x</i></sub> promoted the adsorption of both O<sub>2</sub> and HMF. The synergistic roles of O<sub>V</sub> and O<sub>L</sub> contributed to the high activity of this catalyst in converting HMF to FDCA. This study provides critical insights into the strategic regulation of O<sub>L</sub> activity in Mn-based oxides, offering promising avenues for improving the efficiency and cost-effectiveness of biomass-based chemical production via catalytic oxidation.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"10 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic Metal Doping in MnOx Catalysts Unlocks High-Yield 2,5-Furandicarboxylic Acid Production via Tailored Lattice Oxygen Activity and Oxygen Vacancies\",\"authors\":\"Qing Liu, Yuan Gong, Jing Zeng, Yinghong Zhao, Jia Lv, Zhicheng Jiang, Changwei Hu, Yingdong Zhou\",\"doi\":\"10.1021/acssuschemeng.4c09055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2,5-Furandicarboxylic acid (FDCA), derived from the oxidation of 5-hydroxymethylfurfural (HMF), is emerging as a viable biomass-based monomer for bioplastic production, offering a sustainable alternative to a petroleum-derived monomer. This study systematically investigates lattice oxygen (O<sub>L</sub>) activation in Mn-based oxides through doping with transition metals (Ce, Zr, La, and Sm) to enhance the aerobic oxidation of HMF to FDCA. Among the prepared catalysts, Mn<sub>6</sub>Ce<sub>1</sub>O<sub><i>x</i></sub> (Mn/Ce molar ratio of 6), with the highest surface oxygen vacancy (O<sub>V</sub>) concentration and activated O<sub>L</sub>, achieved a high FDCA yield of 97.2% with a generation rate of 1520 μmol<sub>FDCA</sub> g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> under mild conditions (120 °C, 1 MPa O<sub>2</sub>, 8 h). Catalyst characterization results revealed that the metal dopants modulated the strength of Mn–O bonds, thereby influencing O<sub>L</sub> activity and O<sub>V</sub> concentration. Incorporating Ce ions into the MnO<sub><i>x</i></sub> lattice weakened Mn–O bond strength, enhancing O<sub>L</sub> mobility and promoting O<sub>V</sub> formation. This reactive O<sub>L</sub>, acting as the active oxygen species for HMF oxidation, could be efficiently regenerated via the Mars–van Krevelen mechanism. The abundant O<sub>V</sub> on Mn<sub>6</sub>Ce<sub>1</sub>O<sub><i>x</i></sub> promoted the adsorption of both O<sub>2</sub> and HMF. The synergistic roles of O<sub>V</sub> and O<sub>L</sub> contributed to the high activity of this catalyst in converting HMF to FDCA. This study provides critical insights into the strategic regulation of O<sub>L</sub> activity in Mn-based oxides, offering promising avenues for improving the efficiency and cost-effectiveness of biomass-based chemical production via catalytic oxidation.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c09055\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c09055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

2,5-呋喃二甲酸(FDCA)是由5-羟甲基糠醛(HMF)氧化而来,作为生物塑料生产中可行的生物质基单体,为石油衍生单体提供了可持续的替代品。本研究通过掺杂过渡金属(Ce, Zr, La和Sm)来增强HMF对FDCA的有氧氧化,系统地研究了mn基氧化物中晶格氧(OL)的活化。在所制备的催化剂中,Mn6Ce1Ox (Mn/Ce摩尔比为6)具有最高的表面氧空位(OV)浓度和活化OL,在温和条件下(120℃,1 MPa O2, 8 h),生成速率为1520 μmolFDCA gcat-1 h - 1, FDCA产率高达97.2%。催化剂表征结果表明,金属掺杂剂调节了Mn - o键的强度,从而影响了OL活性和OV浓度。在MnOx晶格中加入Ce离子削弱了Mn-O键强度,增强了OL迁移率,促进了OV的形成。这种反应性OL作为HMF氧化的活性氧,可以通过Mars-van Krevelen机制有效地再生。mn6ce10ox上丰富的OV促进了O2和HMF的吸附。OV和OL的协同作用使得该催化剂在将HMF转化为FDCA方面具有较高的活性。该研究为mn基氧化物中OL活性的战略调控提供了重要见解,为通过催化氧化提高生物质化学生产的效率和成本效益提供了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strategic Metal Doping in MnOx Catalysts Unlocks High-Yield 2,5-Furandicarboxylic Acid Production via Tailored Lattice Oxygen Activity and Oxygen Vacancies

Strategic Metal Doping in MnOx Catalysts Unlocks High-Yield 2,5-Furandicarboxylic Acid Production via Tailored Lattice Oxygen Activity and Oxygen Vacancies
2,5-Furandicarboxylic acid (FDCA), derived from the oxidation of 5-hydroxymethylfurfural (HMF), is emerging as a viable biomass-based monomer for bioplastic production, offering a sustainable alternative to a petroleum-derived monomer. This study systematically investigates lattice oxygen (OL) activation in Mn-based oxides through doping with transition metals (Ce, Zr, La, and Sm) to enhance the aerobic oxidation of HMF to FDCA. Among the prepared catalysts, Mn6Ce1Ox (Mn/Ce molar ratio of 6), with the highest surface oxygen vacancy (OV) concentration and activated OL, achieved a high FDCA yield of 97.2% with a generation rate of 1520 μmolFDCA gcat–1 h–1 under mild conditions (120 °C, 1 MPa O2, 8 h). Catalyst characterization results revealed that the metal dopants modulated the strength of Mn–O bonds, thereby influencing OL activity and OV concentration. Incorporating Ce ions into the MnOx lattice weakened Mn–O bond strength, enhancing OL mobility and promoting OV formation. This reactive OL, acting as the active oxygen species for HMF oxidation, could be efficiently regenerated via the Mars–van Krevelen mechanism. The abundant OV on Mn6Ce1Ox promoted the adsorption of both O2 and HMF. The synergistic roles of OV and OL contributed to the high activity of this catalyst in converting HMF to FDCA. This study provides critical insights into the strategic regulation of OL activity in Mn-based oxides, offering promising avenues for improving the efficiency and cost-effectiveness of biomass-based chemical production via catalytic oxidation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信