通过精确的单原子Ir沉积在功能P岛上的特殊CO2加氢制乙醇

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Lingyue Liu, Jinjie Liu, Dr. Guangchao Li, Xiuwen Shi, Prof. Jun Yin, Prof. Shourong Zheng, Prof. Ka-Fu Yung, Prof. Hong Bin Yang, Prof. Tsz Woon Benedict Lo
{"title":"通过精确的单原子Ir沉积在功能P岛上的特殊CO2加氢制乙醇","authors":"Dr. Lingyue Liu,&nbsp;Jinjie Liu,&nbsp;Dr. Guangchao Li,&nbsp;Xiuwen Shi,&nbsp;Prof. Jun Yin,&nbsp;Prof. Shourong Zheng,&nbsp;Prof. Ka-Fu Yung,&nbsp;Prof. Hong Bin Yang,&nbsp;Prof. Tsz Woon Benedict Lo","doi":"10.1002/anie.202422744","DOIUrl":null,"url":null,"abstract":"<p>The thermocatalytic hydrogenation of CO<sub>2</sub> to ethanol has attracted significant interest because ethanol offers ease of transport and substantial value in chemical synthesis. Here, we present a state-of-the-art catalyst for the CO<sub>2</sub> hydrogenation to ethanol achieved by precisely depositing single-atom Ir species on P cluster islands situated on the In<sub>2</sub>O<sub>3</sub> nanosheets. The Ir<sub>1</sub>-P<sub>x</sub>/In<sub>2</sub>O<sub>3</sub> catalyst achieves an impressive ethanol yield of 3.33 mmol g<sup>−1</sup> h<sup>−1</sup> and a turnover frequency (TOF) of 914 h<sup>−1</sup> under 1.0 MPa (H<sub>2</sub>/CO<sub>2</sub>=3 : 1) at 180 °C, nearly 8 times higher than that of the unmodified Ir<sub>1</sub>/In<sub>2</sub>O<sub>3</sub> catalyst. Additionally, at a more industrially relevant pressure of 5.0 MPa, the TOF of the Ir<sub>1</sub>-P<sub>x</sub>/In<sub>2</sub>O<sub>3</sub> catalyst can reach up to 2108 h<sup>−1</sup>, surpassing previously reported catalysts. Combined in situ characterization and theoretical studies reveal that the hydrogenation process is significantly enhanced by the Ir<sub>1</sub>-P<sub>x</sub> entities. Specifically, the Ir atom facilitates CO<sub>2</sub> activation and C−C coupling, while the surrounding P island exhibits exceptional H<sub>2</sub> dissociation ability. These three steps have been found crucial for the CO<sub>2</sub> hydrogenation reaction. This discovery opens new opportunities for the regulation of the microenvironment of current catalysts by providing essential chemical functionalities that enhance intricate and complex reaction processes.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 17","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202422744","citationCount":"0","resultStr":"{\"title\":\"Exceptional CO2 Hydrogenation to Ethanol via Precise Single-Atom Ir Deposition on Functional P Islands\",\"authors\":\"Dr. Lingyue Liu,&nbsp;Jinjie Liu,&nbsp;Dr. Guangchao Li,&nbsp;Xiuwen Shi,&nbsp;Prof. Jun Yin,&nbsp;Prof. Shourong Zheng,&nbsp;Prof. Ka-Fu Yung,&nbsp;Prof. Hong Bin Yang,&nbsp;Prof. Tsz Woon Benedict Lo\",\"doi\":\"10.1002/anie.202422744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The thermocatalytic hydrogenation of CO<sub>2</sub> to ethanol has attracted significant interest because ethanol offers ease of transport and substantial value in chemical synthesis. Here, we present a state-of-the-art catalyst for the CO<sub>2</sub> hydrogenation to ethanol achieved by precisely depositing single-atom Ir species on P cluster islands situated on the In<sub>2</sub>O<sub>3</sub> nanosheets. The Ir<sub>1</sub>-P<sub>x</sub>/In<sub>2</sub>O<sub>3</sub> catalyst achieves an impressive ethanol yield of 3.33 mmol g<sup>−1</sup> h<sup>−1</sup> and a turnover frequency (TOF) of 914 h<sup>−1</sup> under 1.0 MPa (H<sub>2</sub>/CO<sub>2</sub>=3 : 1) at 180 °C, nearly 8 times higher than that of the unmodified Ir<sub>1</sub>/In<sub>2</sub>O<sub>3</sub> catalyst. Additionally, at a more industrially relevant pressure of 5.0 MPa, the TOF of the Ir<sub>1</sub>-P<sub>x</sub>/In<sub>2</sub>O<sub>3</sub> catalyst can reach up to 2108 h<sup>−1</sup>, surpassing previously reported catalysts. Combined in situ characterization and theoretical studies reveal that the hydrogenation process is significantly enhanced by the Ir<sub>1</sub>-P<sub>x</sub> entities. Specifically, the Ir atom facilitates CO<sub>2</sub> activation and C−C coupling, while the surrounding P island exhibits exceptional H<sub>2</sub> dissociation ability. These three steps have been found crucial for the CO<sub>2</sub> hydrogenation reaction. This discovery opens new opportunities for the regulation of the microenvironment of current catalysts by providing essential chemical functionalities that enhance intricate and complex reaction processes.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 17\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202422744\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202422744\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202422744","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳的热催化加氢制乙醇引起了人们极大的兴趣,因为乙醇易于运输,在化学合成中有很大的价值。在这里,我们提出了一种最先进的催化剂,通过在位于In2O3纳米片上的P簇岛上精确沉积单原子Ir来实现二氧化碳加氢到乙醇。在180℃下,在1.0 MPa (H2/CO2 = 3:1)条件下,Ir1- px /In2O3催化剂的乙醇产率为3.33 mmol g-1 h-1,周转频率(TOF)为914 h-1,比未改性的Ir1/In2O3催化剂高出近8倍。此外,在5.0 MPa的工业压力下,Ir1-Px/In2O3催化剂的TOF可以达到2108 h-1,超过了之前报道的催化剂。结合原位表征和理论研究表明,Ir1-Px实体显著增强了加氢过程。具体来说,Ir原子促进CO2活化和C-C偶联,而周围的P岛表现出优异的H2解离能力。这三个步骤对二氧化碳加氢反应至关重要。这一发现通过提供基本的化学功能来增强复杂的反应过程,为当前催化剂的微环境调节开辟了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exceptional CO2 Hydrogenation to Ethanol via Precise Single-Atom Ir Deposition on Functional P Islands

Exceptional CO2 Hydrogenation to Ethanol via Precise Single-Atom Ir Deposition on Functional P Islands

The thermocatalytic hydrogenation of CO2 to ethanol has attracted significant interest because ethanol offers ease of transport and substantial value in chemical synthesis. Here, we present a state-of-the-art catalyst for the CO2 hydrogenation to ethanol achieved by precisely depositing single-atom Ir species on P cluster islands situated on the In2O3 nanosheets. The Ir1-Px/In2O3 catalyst achieves an impressive ethanol yield of 3.33 mmol g−1 h−1 and a turnover frequency (TOF) of 914 h−1 under 1.0 MPa (H2/CO2=3 : 1) at 180 °C, nearly 8 times higher than that of the unmodified Ir1/In2O3 catalyst. Additionally, at a more industrially relevant pressure of 5.0 MPa, the TOF of the Ir1-Px/In2O3 catalyst can reach up to 2108 h−1, surpassing previously reported catalysts. Combined in situ characterization and theoretical studies reveal that the hydrogenation process is significantly enhanced by the Ir1-Px entities. Specifically, the Ir atom facilitates CO2 activation and C−C coupling, while the surrounding P island exhibits exceptional H2 dissociation ability. These three steps have been found crucial for the CO2 hydrogenation reaction. This discovery opens new opportunities for the regulation of the microenvironment of current catalysts by providing essential chemical functionalities that enhance intricate and complex reaction processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信