低温铝热剂反应在金属氧化物半导体中形成氧空位:以光电化学电池为例

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-01-21 DOI:10.1016/j.chempr.2024.12.006
Jeong Hun Kim, Jin Uk Lee, Likai Zheng, Jun Li, Kevin Sivula, Michael Grätzel, Jae Sung Lee, Jin Hyun Kim
{"title":"低温铝热剂反应在金属氧化物半导体中形成氧空位:以光电化学电池为例","authors":"Jeong Hun Kim, Jin Uk Lee, Likai Zheng, Jun Li, Kevin Sivula, Michael Grätzel, Jae Sung Lee, Jin Hyun Kim","doi":"10.1016/j.chempr.2024.12.006","DOIUrl":null,"url":null,"abstract":"The formation of oxygen vacancies (<span><span style=\"\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mi is=\"true\">ö</mi></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mi is=\"true\">ö</mi></msub></mrow></math></script></span>) in n-type semiconductors is a key strategy for improving the performance of metal-oxide-based photoanodes. Whereas <span><span style=\"\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mi is=\"true\">ö</mi></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mi is=\"true\">ö</mi></msub></mrow></math></script></span> has traditionally been created by gas- or liquid-phase treatments, here we report a solid-state reduction technique termed the “low-temperature thermite reaction” (LTTR), which is effective for various metal oxides and solid reductants. In the case of ZnFe<sub>2</sub>O<sub>4</sub> (ZFO), the LTTR increases charge-carrier density and bulk charge-separation efficiency by ∼100-fold and 2∼4-fold, respectively, for ZFO with an Fe reductant relative to pristine ZFO. The photocurrent densities for sacrificial reagent and water oxidation (1.8 and 1.6 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub>, respectively) achieved here represent the highest values reported for ZFO photoanodes. Also, a ZFO-lead halide perovskite solar cell tandem water-splitting cell demonstrated an unbiased solar-to-hydrogen efficiency of 1.85%. The LTTR is applicable to large-area (25 cm<sup>2</sup>) photoanodes under ambient atmosphere. Thus, the LTTR could become a more effective and versatile technique than conventional ones.","PeriodicalId":268,"journal":{"name":"Chem","volume":"140 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature thermite reaction to form oxygen vacancies in metal-oxide semiconductors: A case study of photoelectrochemical cells\",\"authors\":\"Jeong Hun Kim, Jin Uk Lee, Likai Zheng, Jun Li, Kevin Sivula, Michael Grätzel, Jae Sung Lee, Jin Hyun Kim\",\"doi\":\"10.1016/j.chempr.2024.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formation of oxygen vacancies (<span><span style=\\\"\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">V</mi><mi is=\\\"true\\\">ö</mi></msub></mrow></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">V</mi><mi is=\\\"true\\\">ö</mi></msub></mrow></math></script></span>) in n-type semiconductors is a key strategy for improving the performance of metal-oxide-based photoanodes. Whereas <span><span style=\\\"\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">V</mi><mi is=\\\"true\\\">ö</mi></msub></mrow></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">V</mi><mi is=\\\"true\\\">ö</mi></msub></mrow></math></script></span> has traditionally been created by gas- or liquid-phase treatments, here we report a solid-state reduction technique termed the “low-temperature thermite reaction” (LTTR), which is effective for various metal oxides and solid reductants. In the case of ZnFe<sub>2</sub>O<sub>4</sub> (ZFO), the LTTR increases charge-carrier density and bulk charge-separation efficiency by ∼100-fold and 2∼4-fold, respectively, for ZFO with an Fe reductant relative to pristine ZFO. The photocurrent densities for sacrificial reagent and water oxidation (1.8 and 1.6 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub>, respectively) achieved here represent the highest values reported for ZFO photoanodes. Also, a ZFO-lead halide perovskite solar cell tandem water-splitting cell demonstrated an unbiased solar-to-hydrogen efficiency of 1.85%. The LTTR is applicable to large-area (25 cm<sup>2</sup>) photoanodes under ambient atmosphere. Thus, the LTTR could become a more effective and versatile technique than conventional ones.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.12.006\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.12.006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在n型半导体中形成氧空位(VöVö)是提高金属氧化物基光阳极性能的关键策略。虽然VöVö传统上是由气相或液相处理产生的,但在这里,我们报告了一种称为“低温铝热反应”(LTTR)的固态还原技术,该技术对各种金属氧化物和固体还原剂有效。在ZnFe2O4 (ZFO)的情况下,相对于原始ZFO, LTTR使带有Fe还原剂的ZFO的载流子密度和体电荷分离效率分别提高了~ 100倍和2 ~ 4倍。牺牲试剂和水氧化的光电流密度(分别为1.8和1.6 mA/cm2, 1.23 VRHE)代表了ZFO光阳极报道的最高值。此外,zfo -卤化铅钙钛矿串联水分解太阳能电池的太阳能制氢效率为1.85%。ltr适用于环境气氛下的大面积(25 cm2)光阳极。因此,ltr可能成为一种比传统技术更有效、更通用的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low-temperature thermite reaction to form oxygen vacancies in metal-oxide semiconductors: A case study of photoelectrochemical cells

Low-temperature thermite reaction to form oxygen vacancies in metal-oxide semiconductors: A case study of photoelectrochemical cells
The formation of oxygen vacancies (Vö) in n-type semiconductors is a key strategy for improving the performance of metal-oxide-based photoanodes. Whereas Vö has traditionally been created by gas- or liquid-phase treatments, here we report a solid-state reduction technique termed the “low-temperature thermite reaction” (LTTR), which is effective for various metal oxides and solid reductants. In the case of ZnFe2O4 (ZFO), the LTTR increases charge-carrier density and bulk charge-separation efficiency by ∼100-fold and 2∼4-fold, respectively, for ZFO with an Fe reductant relative to pristine ZFO. The photocurrent densities for sacrificial reagent and water oxidation (1.8 and 1.6 mA/cm2 at 1.23 VRHE, respectively) achieved here represent the highest values reported for ZFO photoanodes. Also, a ZFO-lead halide perovskite solar cell tandem water-splitting cell demonstrated an unbiased solar-to-hydrogen efficiency of 1.85%. The LTTR is applicable to large-area (25 cm2) photoanodes under ambient atmosphere. Thus, the LTTR could become a more effective and versatile technique than conventional ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信