通过机器学习引导实验发现金属-有机框架的双离子-电子导电性

IF 7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Robabeh Bashiri, Preston S. Lawson, Stewart He, Sadisha Nanayakkara, Kwangnam Kim, Nicholas S. Barnett, Vitalie Stavila, Farid El Gabaly, Jaydie Lee, Eric Ayars, Monica C. So
{"title":"通过机器学习引导实验发现金属-有机框架的双离子-电子导电性","authors":"Robabeh Bashiri, Preston S. Lawson, Stewart He, Sadisha Nanayakkara, Kwangnam Kim, Nicholas S. Barnett, Vitalie Stavila, Farid El Gabaly, Jaydie Lee, Eric Ayars, Monica C. So","doi":"10.1021/acs.chemmater.4c02974","DOIUrl":null,"url":null,"abstract":"Identifying conductive metal–organic frameworks (MOFs) with a coupled ion-electron behavior from a vast array of existing MOFs offers a cost-effective strategy to tap into their potential in energy storage applications. This study employs classification and regression machine learning (ML) to rapidly screen the CoREMOF database and experimental methodologies to validate ML predictions. This process revealed the structure–property relationships contributing to MOFs’ bulk ion-electron conductivity. Among the 60 conductive compounds predicted, only two p-type conductive MOFs, [Cu<sub>3</sub>(μ<sub>3</sub>-OH) (μ<sub>3</sub>-C<sub>4</sub>H<sub>2</sub>N<sub>2</sub>O<sub>2</sub>)<sub>3</sub>(H<sub>3</sub>O)]·2C<sub>2</sub>H<sub>5</sub>OH·4H<sub>2</sub>O <b>(1)</b> and NH<sub>4</sub>[Cu<sub>3</sub>(μ<sub>3</sub>-OH)(μ<sub>3</sub>-C<sub>4</sub>H<sub>2</sub>N<sub>2</sub>O<sub>2</sub>)<sub>3</sub>]·8H<sub>2</sub>O or <b>(2)</b> (C<sub>4</sub>H<sub>2</sub>N<sub>2</sub>O = 1H-pyrazole-4-carboxylic acid), were validated for their coupled electron-ion behavior. MOFs utilize earth-abundant copper and pyrazoles as ligands, demonstrating significant potential following thorough electrochemical characterization. Further analysis confirmed the critical role of strong σ-donating, π-accepting, and redox-active ligands in promoting electron mobility. In-depth structural investigations revealed that the presence of the O–Cu–N chain significantly influences conductivity, outperforming MOFs with only Cu–N or Cu–O bonds. Additionally, this study highlights how higher ionic conductivity is correlated with the ion mobility through linkers in <b>1</b> or the presence of ammonium ions in <b>2</b>. These structure–property relationships offer valuable insights for future research in using ML coupled with experimentation to design MOFs containing earth-abundant reagents for ion-electron conductivity without employing a host–guest MOF strategy.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"45 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Dual Ion-Electron Conductivity of Metal–Organic Frameworks via Machine Learning-Guided Experimentation\",\"authors\":\"Robabeh Bashiri, Preston S. Lawson, Stewart He, Sadisha Nanayakkara, Kwangnam Kim, Nicholas S. Barnett, Vitalie Stavila, Farid El Gabaly, Jaydie Lee, Eric Ayars, Monica C. So\",\"doi\":\"10.1021/acs.chemmater.4c02974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying conductive metal–organic frameworks (MOFs) with a coupled ion-electron behavior from a vast array of existing MOFs offers a cost-effective strategy to tap into their potential in energy storage applications. This study employs classification and regression machine learning (ML) to rapidly screen the CoREMOF database and experimental methodologies to validate ML predictions. This process revealed the structure–property relationships contributing to MOFs’ bulk ion-electron conductivity. Among the 60 conductive compounds predicted, only two p-type conductive MOFs, [Cu<sub>3</sub>(μ<sub>3</sub>-OH) (μ<sub>3</sub>-C<sub>4</sub>H<sub>2</sub>N<sub>2</sub>O<sub>2</sub>)<sub>3</sub>(H<sub>3</sub>O)]·2C<sub>2</sub>H<sub>5</sub>OH·4H<sub>2</sub>O <b>(1)</b> and NH<sub>4</sub>[Cu<sub>3</sub>(μ<sub>3</sub>-OH)(μ<sub>3</sub>-C<sub>4</sub>H<sub>2</sub>N<sub>2</sub>O<sub>2</sub>)<sub>3</sub>]·8H<sub>2</sub>O or <b>(2)</b> (C<sub>4</sub>H<sub>2</sub>N<sub>2</sub>O = 1H-pyrazole-4-carboxylic acid), were validated for their coupled electron-ion behavior. MOFs utilize earth-abundant copper and pyrazoles as ligands, demonstrating significant potential following thorough electrochemical characterization. Further analysis confirmed the critical role of strong σ-donating, π-accepting, and redox-active ligands in promoting electron mobility. In-depth structural investigations revealed that the presence of the O–Cu–N chain significantly influences conductivity, outperforming MOFs with only Cu–N or Cu–O bonds. Additionally, this study highlights how higher ionic conductivity is correlated with the ion mobility through linkers in <b>1</b> or the presence of ammonium ions in <b>2</b>. These structure–property relationships offer valuable insights for future research in using ML coupled with experimentation to design MOFs containing earth-abundant reagents for ion-electron conductivity without employing a host–guest MOF strategy.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02974\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02974","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

从大量现有的mof中识别具有耦合离子-电子行为的导电金属有机框架(mof),为挖掘其在储能应用中的潜力提供了一种经济有效的策略。本研究采用分类和回归机器学习(ML)快速筛选CoREMOF数据库和实验方法来验证ML预测。这一过程揭示了影响mof体离子电子导电性的结构-性能关系。在预测的60种导电化合物中,只有两种p型导电MOFs [Cu3(μ3-OH)(μ3-C4H2N2O2)3 (h30)]·2C2H5OH·4H2O(1)]和NH4[Cu3(μ3-OH)(μ3-C4H2N2O2)3]·8H2O或(2)(C4H2N2O = 1h -pyrazol -4-羧酸)的电子-离子耦合行为得到了验证。mof利用地球上丰富的铜和吡唑作为配体,在彻底的电化学表征后显示出巨大的潜力。进一步分析证实了强给σ、接受π和氧化还原活性配体对促进电子迁移率的关键作用。深入的结构研究表明,O-Cu-N链的存在显著影响电导率,优于仅具有Cu-N或Cu-O键的mof。此外,本研究强调了高离子电导率如何与1中通过连接剂的离子迁移率或2中铵离子的存在相关。这些结构-性质关系为未来的研究提供了有价值的见解,这些研究将ML与实验相结合,在不采用主-客体MOF策略的情况下,设计含有丰富的离子电子电导率试剂的MOF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discovery of Dual Ion-Electron Conductivity of Metal–Organic Frameworks via Machine Learning-Guided Experimentation

Discovery of Dual Ion-Electron Conductivity of Metal–Organic Frameworks via Machine Learning-Guided Experimentation
Identifying conductive metal–organic frameworks (MOFs) with a coupled ion-electron behavior from a vast array of existing MOFs offers a cost-effective strategy to tap into their potential in energy storage applications. This study employs classification and regression machine learning (ML) to rapidly screen the CoREMOF database and experimental methodologies to validate ML predictions. This process revealed the structure–property relationships contributing to MOFs’ bulk ion-electron conductivity. Among the 60 conductive compounds predicted, only two p-type conductive MOFs, [Cu33-OH) (μ3-C4H2N2O2)3(H3O)]·2C2H5OH·4H2O (1) and NH4[Cu33-OH)(μ3-C4H2N2O2)3]·8H2O or (2) (C4H2N2O = 1H-pyrazole-4-carboxylic acid), were validated for their coupled electron-ion behavior. MOFs utilize earth-abundant copper and pyrazoles as ligands, demonstrating significant potential following thorough electrochemical characterization. Further analysis confirmed the critical role of strong σ-donating, π-accepting, and redox-active ligands in promoting electron mobility. In-depth structural investigations revealed that the presence of the O–Cu–N chain significantly influences conductivity, outperforming MOFs with only Cu–N or Cu–O bonds. Additionally, this study highlights how higher ionic conductivity is correlated with the ion mobility through linkers in 1 or the presence of ammonium ions in 2. These structure–property relationships offer valuable insights for future research in using ML coupled with experimentation to design MOFs containing earth-abundant reagents for ion-electron conductivity without employing a host–guest MOF strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信