{"title":"胎盘的分子和细胞形态学揭示了生殖免疫学的新机制","authors":"Penghao Li, Liting Zeng, Xiaomiao Yan, Ziqi Zhu, Qiaoxiu Gu, Xuqing He, Sujuan Zhang, Rurong Mao, Jingliang Xu, Fengshan Xie, Hui Wang, Ziteng Li, Jing Shu, Weifeng Zhang, Yulin Sha, Jin Huang, Meng Su, Qu Zheng, Jian Ma, Xiaolin Zhou, Jiang Gu","doi":"10.1016/j.jare.2025.01.025","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Despite of numerous studies of the placenta, some molecular and cellular characteristics, particularly the relationship among different cell types, have not been well understood. We aim to investigate the basic and intricate details of cellular and molecular elements in early and late phase placentas to gain better understanding of the immune regulation of human reproductive process.<h3>Methods</h3>A novel combination of techniques of spatial transcriptomics(ST), multiple immunohistochemistry, and a dual labeling combining immunohistochemistry and (fluorescence in situ hybridization) FISH on normal and ectopic pregnancy and animal models was employed to investigate the placenta at tissue, cell, protein and molecular levels and to trace the fetal and maternal origin of every cell in early and late placentas.<h3>Results</h3>Original discoveries include early expression of immune checkpoint proteins in embryo trophoblasts even before implantation. The detailed distributional relationships among different cell types of fetal and maternal origins in placenta and decidua indicate an immune rejection of the mother towards the fetus and this was counterbalanced by immune inhibitory proteins and blocking antibody Immunoglobulin G4 (IgG4) at the junction between the fetus and the mother. In contrary to common believe, we found that vascular endothelial and glandular epithelial cells in the decidua remain maternal in origin and were not replaced by fetal cells. At term placenta, fetal immune cells infiltrated into the maternal side of the decidus and vice versa indicating a possible immune reaction between fetal and maternal immune systems and suggesting a possible immune mechanism for trigger of parturition. The ability of trophoblasts to create an immune suppressed environment was also supported by findings in ectopic pregnancy and the animal models.<h3>Conclusion</h3>The findings indicate a fetus-driven mechanism of immune balance involving both cellular and humoral immunity in human reproduction.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"49 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular and cellular morphology of placenta unveils new mechanisms of reproductive immunology\",\"authors\":\"Penghao Li, Liting Zeng, Xiaomiao Yan, Ziqi Zhu, Qiaoxiu Gu, Xuqing He, Sujuan Zhang, Rurong Mao, Jingliang Xu, Fengshan Xie, Hui Wang, Ziteng Li, Jing Shu, Weifeng Zhang, Yulin Sha, Jin Huang, Meng Su, Qu Zheng, Jian Ma, Xiaolin Zhou, Jiang Gu\",\"doi\":\"10.1016/j.jare.2025.01.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Introduction</h3>Despite of numerous studies of the placenta, some molecular and cellular characteristics, particularly the relationship among different cell types, have not been well understood. We aim to investigate the basic and intricate details of cellular and molecular elements in early and late phase placentas to gain better understanding of the immune regulation of human reproductive process.<h3>Methods</h3>A novel combination of techniques of spatial transcriptomics(ST), multiple immunohistochemistry, and a dual labeling combining immunohistochemistry and (fluorescence in situ hybridization) FISH on normal and ectopic pregnancy and animal models was employed to investigate the placenta at tissue, cell, protein and molecular levels and to trace the fetal and maternal origin of every cell in early and late placentas.<h3>Results</h3>Original discoveries include early expression of immune checkpoint proteins in embryo trophoblasts even before implantation. The detailed distributional relationships among different cell types of fetal and maternal origins in placenta and decidua indicate an immune rejection of the mother towards the fetus and this was counterbalanced by immune inhibitory proteins and blocking antibody Immunoglobulin G4 (IgG4) at the junction between the fetus and the mother. In contrary to common believe, we found that vascular endothelial and glandular epithelial cells in the decidua remain maternal in origin and were not replaced by fetal cells. At term placenta, fetal immune cells infiltrated into the maternal side of the decidus and vice versa indicating a possible immune reaction between fetal and maternal immune systems and suggesting a possible immune mechanism for trigger of parturition. The ability of trophoblasts to create an immune suppressed environment was also supported by findings in ectopic pregnancy and the animal models.<h3>Conclusion</h3>The findings indicate a fetus-driven mechanism of immune balance involving both cellular and humoral immunity in human reproduction.\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2025.01.025\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.01.025","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Molecular and cellular morphology of placenta unveils new mechanisms of reproductive immunology
Introduction
Despite of numerous studies of the placenta, some molecular and cellular characteristics, particularly the relationship among different cell types, have not been well understood. We aim to investigate the basic and intricate details of cellular and molecular elements in early and late phase placentas to gain better understanding of the immune regulation of human reproductive process.
Methods
A novel combination of techniques of spatial transcriptomics(ST), multiple immunohistochemistry, and a dual labeling combining immunohistochemistry and (fluorescence in situ hybridization) FISH on normal and ectopic pregnancy and animal models was employed to investigate the placenta at tissue, cell, protein and molecular levels and to trace the fetal and maternal origin of every cell in early and late placentas.
Results
Original discoveries include early expression of immune checkpoint proteins in embryo trophoblasts even before implantation. The detailed distributional relationships among different cell types of fetal and maternal origins in placenta and decidua indicate an immune rejection of the mother towards the fetus and this was counterbalanced by immune inhibitory proteins and blocking antibody Immunoglobulin G4 (IgG4) at the junction between the fetus and the mother. In contrary to common believe, we found that vascular endothelial and glandular epithelial cells in the decidua remain maternal in origin and were not replaced by fetal cells. At term placenta, fetal immune cells infiltrated into the maternal side of the decidus and vice versa indicating a possible immune reaction between fetal and maternal immune systems and suggesting a possible immune mechanism for trigger of parturition. The ability of trophoblasts to create an immune suppressed environment was also supported by findings in ectopic pregnancy and the animal models.
Conclusion
The findings indicate a fetus-driven mechanism of immune balance involving both cellular and humoral immunity in human reproduction.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.