Xiaoyue Yang, Sarah E. Kubican, Zhongchao Yi, Sheng Tong
{"title":"用于分子医学的磁性纳米粒子的研究进展","authors":"Xiaoyue Yang, Sarah E. Kubican, Zhongchao Yi, Sheng Tong","doi":"10.1039/d4cc05167j","DOIUrl":null,"url":null,"abstract":"Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine. Under external magnetic fields, MNPs can generate mechano- or thermal stimuli to modulate individual molecules or cells deep within tissue, offering precise, remote control of biological processes at cellular and molecular levels. These unique capabilities have opened new avenues in emerging fields such as genome editing, cell therapies, and neuroscience, underpinned by a growing understanding of nanomagnetism and the molecular mechanisms responding to mechanical and thermal cues. Research on MNPs as a versatile synthetic material capable of engineering control at the cellular and molecular levels holds great promise for advancing the frontiers of molecular medicine, including areas such as genome editing and synthetic biology. This review summarizes recent clinical studies showcasing the classical applications of MNPs and explores their integration into molecular medicine, with the goal of inspiring the development of next-generation MNP-based platforms for disease treatment.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"37 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in magnetic nanoparticles for molecular medicine\",\"authors\":\"Xiaoyue Yang, Sarah E. Kubican, Zhongchao Yi, Sheng Tong\",\"doi\":\"10.1039/d4cc05167j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine. Under external magnetic fields, MNPs can generate mechano- or thermal stimuli to modulate individual molecules or cells deep within tissue, offering precise, remote control of biological processes at cellular and molecular levels. These unique capabilities have opened new avenues in emerging fields such as genome editing, cell therapies, and neuroscience, underpinned by a growing understanding of nanomagnetism and the molecular mechanisms responding to mechanical and thermal cues. Research on MNPs as a versatile synthetic material capable of engineering control at the cellular and molecular levels holds great promise for advancing the frontiers of molecular medicine, including areas such as genome editing and synthetic biology. This review summarizes recent clinical studies showcasing the classical applications of MNPs and explores their integration into molecular medicine, with the goal of inspiring the development of next-generation MNP-based platforms for disease treatment.\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cc05167j\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cc05167j","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advances in magnetic nanoparticles for molecular medicine
Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine. Under external magnetic fields, MNPs can generate mechano- or thermal stimuli to modulate individual molecules or cells deep within tissue, offering precise, remote control of biological processes at cellular and molecular levels. These unique capabilities have opened new avenues in emerging fields such as genome editing, cell therapies, and neuroscience, underpinned by a growing understanding of nanomagnetism and the molecular mechanisms responding to mechanical and thermal cues. Research on MNPs as a versatile synthetic material capable of engineering control at the cellular and molecular levels holds great promise for advancing the frontiers of molecular medicine, including areas such as genome editing and synthetic biology. This review summarizes recent clinical studies showcasing the classical applications of MNPs and explores their integration into molecular medicine, with the goal of inspiring the development of next-generation MNP-based platforms for disease treatment.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.