{"title":"用于先进氧气进化反应的镁蒸发诱导非晶态多主元素合金","authors":"Jianghong Zhang, Yu Lu, Mingzhen Xiu, Jiuyang Xia, Hamzah Kamaruddin, Yu Liang, Ke Li, Kang Huang, Bowei Zhang, Bowen Huang, Junsheng Wu, Yizhong Huang","doi":"10.1016/j.nanoen.2025.110686","DOIUrl":null,"url":null,"abstract":"Multi-principal element alloys (MPEAs) have been recognized as emerged electrocatalysts that facilitate the high efficiency for oxygen evolution reaction (OER). With the noble metals free, they are cost-effective and a potential candidate to replace the traditional RuO<sub>2</sub> and IrO<sub>2</sub>. The catalysis can be further improved through the construction of their lattice structures. This study proposes an innovative approach which makes use of pulsed laser irradiation to synthesize nano-sized amorphous MPEA particles. The low-boiling-point element Mg is incorporated with Fe, Co and Ni to synthesize MPEAs (FeCoNi)<sub>1-x</sub>Mg<sub>x</sub> (x=0.05, 0.15, 0.25, 0.35). The high thermal temperature generated during the interaction between the laser beam and MPEAs gives rise to the evaporation of Mg leading to the amorphization. The increase of Mg content intensifies the amorphization extent. (FeCoNi)<sub>0.65</sub>Mg<sub>0.35</sub> achieves a lower overpotential (256<!-- --> <!-- -->mV@10<!-- --> <!-- -->mA/cm<sup>2</sup>) for OER compared to the crystal counterparts and demonstrates long-term catalytic stability. Theoretical calculations reveal that amorphization strengthens OOH* adsorption energy due to improved charge transfer. This research provides insights into novel synthesis strategies and the catalytic mechanisms of amorphous alloys.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"37 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mg-Evaporation Induced Amorphous Multi-Principal Element Alloys for Advanced Oxygen Evolution Reaction\",\"authors\":\"Jianghong Zhang, Yu Lu, Mingzhen Xiu, Jiuyang Xia, Hamzah Kamaruddin, Yu Liang, Ke Li, Kang Huang, Bowei Zhang, Bowen Huang, Junsheng Wu, Yizhong Huang\",\"doi\":\"10.1016/j.nanoen.2025.110686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-principal element alloys (MPEAs) have been recognized as emerged electrocatalysts that facilitate the high efficiency for oxygen evolution reaction (OER). With the noble metals free, they are cost-effective and a potential candidate to replace the traditional RuO<sub>2</sub> and IrO<sub>2</sub>. The catalysis can be further improved through the construction of their lattice structures. This study proposes an innovative approach which makes use of pulsed laser irradiation to synthesize nano-sized amorphous MPEA particles. The low-boiling-point element Mg is incorporated with Fe, Co and Ni to synthesize MPEAs (FeCoNi)<sub>1-x</sub>Mg<sub>x</sub> (x=0.05, 0.15, 0.25, 0.35). The high thermal temperature generated during the interaction between the laser beam and MPEAs gives rise to the evaporation of Mg leading to the amorphization. The increase of Mg content intensifies the amorphization extent. (FeCoNi)<sub>0.65</sub>Mg<sub>0.35</sub> achieves a lower overpotential (256<!-- --> <!-- -->mV@10<!-- --> <!-- -->mA/cm<sup>2</sup>) for OER compared to the crystal counterparts and demonstrates long-term catalytic stability. Theoretical calculations reveal that amorphization strengthens OOH* adsorption energy due to improved charge transfer. This research provides insights into novel synthesis strategies and the catalytic mechanisms of amorphous alloys.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2025.110686\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110686","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mg-Evaporation Induced Amorphous Multi-Principal Element Alloys for Advanced Oxygen Evolution Reaction
Multi-principal element alloys (MPEAs) have been recognized as emerged electrocatalysts that facilitate the high efficiency for oxygen evolution reaction (OER). With the noble metals free, they are cost-effective and a potential candidate to replace the traditional RuO2 and IrO2. The catalysis can be further improved through the construction of their lattice structures. This study proposes an innovative approach which makes use of pulsed laser irradiation to synthesize nano-sized amorphous MPEA particles. The low-boiling-point element Mg is incorporated with Fe, Co and Ni to synthesize MPEAs (FeCoNi)1-xMgx (x=0.05, 0.15, 0.25, 0.35). The high thermal temperature generated during the interaction between the laser beam and MPEAs gives rise to the evaporation of Mg leading to the amorphization. The increase of Mg content intensifies the amorphization extent. (FeCoNi)0.65Mg0.35 achieves a lower overpotential (256 mV@10 mA/cm2) for OER compared to the crystal counterparts and demonstrates long-term catalytic stability. Theoretical calculations reveal that amorphization strengthens OOH* adsorption energy due to improved charge transfer. This research provides insights into novel synthesis strategies and the catalytic mechanisms of amorphous alloys.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.