利用交流电对废水中难降解有机氮化合物的高效矿化进行微生物氧化还原

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Ye Yuan, Xucui Qian, Lulu Zhang, Wanxin Yin, Tianming Chen, Zhaoxia Li, Cheng Ding, Bo Wang, Bin Liang, Aijie Wang, Yang Liu, Fan Chen
{"title":"利用交流电对废水中难降解有机氮化合物的高效矿化进行微生物氧化还原","authors":"Ye Yuan, Xucui Qian, Lulu Zhang, Wanxin Yin, Tianming Chen, Zhaoxia Li, Cheng Ding, Bo Wang, Bin Liang, Aijie Wang, Yang Liu, Fan Chen","doi":"10.1038/s41545-025-00439-5","DOIUrl":null,"url":null,"abstract":"<p>Traditional biological wastewater treatment struggles to efficiently remove refractory organic nitrogen compounds (RONCs). This study demonstrates the potential of alternating current (AC)-driven bioelectrodes for deep mineralization of nitrobenzene (NB) by coupling in situ reduction and oxidation reactions. Sine-wave AC bioelectrodes overcome the limitations of direct current (DC) systems, achieving 97.6% NB reduction, 90.9% intermediate mineralization, and 80.8% total nitrogen removal while reducing energy consumption by 22.3%. AC stimulation enhances biofilm formation and bidirectional electrocatalytic activity, leading to higher biomass and electron utilization efficiency. Multi-omics analysis shows enrichment of functional microbial consortia involved in NB reduction, aromatic compound oxidation, ammonia oxidation, nitrate/nitrite reduction, and electron transfer, with upregulated enzyme gene expression. Carbon metabolites from catechol meta-cleavage support nitro-reduction, denitrification, and cell viability without external carbon sources. Nitrification-denitrification is the primary pathway for inorganic nitrogen removal. This AC bioelectrode offers an efficient, low-carbon solution for RONC mineralization in wastewater.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"84 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring microbial redox with alternating current for efficient mineralization of refractory organic nitrogen compounds in wastewater\",\"authors\":\"Ye Yuan, Xucui Qian, Lulu Zhang, Wanxin Yin, Tianming Chen, Zhaoxia Li, Cheng Ding, Bo Wang, Bin Liang, Aijie Wang, Yang Liu, Fan Chen\",\"doi\":\"10.1038/s41545-025-00439-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional biological wastewater treatment struggles to efficiently remove refractory organic nitrogen compounds (RONCs). This study demonstrates the potential of alternating current (AC)-driven bioelectrodes for deep mineralization of nitrobenzene (NB) by coupling in situ reduction and oxidation reactions. Sine-wave AC bioelectrodes overcome the limitations of direct current (DC) systems, achieving 97.6% NB reduction, 90.9% intermediate mineralization, and 80.8% total nitrogen removal while reducing energy consumption by 22.3%. AC stimulation enhances biofilm formation and bidirectional electrocatalytic activity, leading to higher biomass and electron utilization efficiency. Multi-omics analysis shows enrichment of functional microbial consortia involved in NB reduction, aromatic compound oxidation, ammonia oxidation, nitrate/nitrite reduction, and electron transfer, with upregulated enzyme gene expression. Carbon metabolites from catechol meta-cleavage support nitro-reduction, denitrification, and cell viability without external carbon sources. Nitrification-denitrification is the primary pathway for inorganic nitrogen removal. This AC bioelectrode offers an efficient, low-carbon solution for RONC mineralization in wastewater.</p>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00439-5\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00439-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的废水生物处理难以有效去除难降解有机氮化合物(RONCs)。该研究证明了交流电驱动的生物电极通过耦合原位还原和氧化反应来实现硝基苯(NB)的深部矿化的潜力。正波交流生物电极克服了直流(DC)系统的限制,实现了97.6%的NB还原,90.9%的中间矿化和80.8%的总氮去除,同时降低了22.3%的能耗。交流刺激增强了生物膜的形成和双向电催化活性,从而提高了生物质和电子的利用效率。多组学分析显示,参与NB还原、芳香族化合物氧化、氨氧化、硝酸盐/亚硝酸盐还原和电子转移的功能微生物群落富集,酶基因表达上调。儿茶酚元裂解的碳代谢物支持氮还原、反硝化和细胞活力,而不需要外部碳源。硝化-反硝化是去除无机氮的主要途径。这种交流生物电极为废水中的RONC矿化提供了一种高效、低碳的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring microbial redox with alternating current for efficient mineralization of refractory organic nitrogen compounds in wastewater

Tailoring microbial redox with alternating current for efficient mineralization of refractory organic nitrogen compounds in wastewater

Traditional biological wastewater treatment struggles to efficiently remove refractory organic nitrogen compounds (RONCs). This study demonstrates the potential of alternating current (AC)-driven bioelectrodes for deep mineralization of nitrobenzene (NB) by coupling in situ reduction and oxidation reactions. Sine-wave AC bioelectrodes overcome the limitations of direct current (DC) systems, achieving 97.6% NB reduction, 90.9% intermediate mineralization, and 80.8% total nitrogen removal while reducing energy consumption by 22.3%. AC stimulation enhances biofilm formation and bidirectional electrocatalytic activity, leading to higher biomass and electron utilization efficiency. Multi-omics analysis shows enrichment of functional microbial consortia involved in NB reduction, aromatic compound oxidation, ammonia oxidation, nitrate/nitrite reduction, and electron transfer, with upregulated enzyme gene expression. Carbon metabolites from catechol meta-cleavage support nitro-reduction, denitrification, and cell viability without external carbon sources. Nitrification-denitrification is the primary pathway for inorganic nitrogen removal. This AC bioelectrode offers an efficient, low-carbon solution for RONC mineralization in wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信