iDIA-QC:基于人工智能的数据独立采集质谱的质量控制

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Huanhuan Gao, Yi Zhu, Dongxue Wang, Zongxiang Nie, He Wang, Guibin Wang, Shuang Liang, Yuting Xie, Yingying Sun, Wenhao Jiang, Zhen Dong, Liqin Qian, Xufei Wang, Mengdi Liang, Min Chen, Houqi Fang, Qiufang Zeng, Jiao Tian, Zeyu Sun, Juan Xue, Shan Li, Chen Chen, Xiang Liu, Xiaolei Lyu, Zhenchang Guo, Yingzi Qi, Ruoyu Wu, Xiaoxian Du, Tingde Tong, Fengchun Kong, Liming Han, Minghui Wang, Yang Zhao, Xinhua Dai, Fuchu He, Tiannan Guo
{"title":"iDIA-QC:基于人工智能的数据独立采集质谱的质量控制","authors":"Huanhuan Gao, Yi Zhu, Dongxue Wang, Zongxiang Nie, He Wang, Guibin Wang, Shuang Liang, Yuting Xie, Yingying Sun, Wenhao Jiang, Zhen Dong, Liqin Qian, Xufei Wang, Mengdi Liang, Min Chen, Houqi Fang, Qiufang Zeng, Jiao Tian, Zeyu Sun, Juan Xue, Shan Li, Chen Chen, Xiang Liu, Xiaolei Lyu, Zhenchang Guo, Yingzi Qi, Ruoyu Wu, Xiaoxian Du, Tingde Tong, Fengchun Kong, Liming Han, Minghui Wang, Yang Zhao, Xinhua Dai, Fuchu He, Tiannan Guo","doi":"10.1038/s41467-024-54871-1","DOIUrl":null,"url":null,"abstract":"<p>Quality control (QC) in mass spectrometry (MS)-based proteomics is mainly based on data-dependent acquisition (DDA) analysis of standard samples. Here, we collect 2754 files acquired by data independent acquisition (DIA) and paired 2638 DDA files from mouse liver digests using 21 mass spectrometers across nine laboratories over 31 months. Our data demonstrate that DIA-based LC-MS/MS-related consensus QC metrics exhibit higher sensitivity compared to DDA-based QC metrics in detecting changes in LC-MS status. We then prioritize 15 metrics and invite 21 experts to manually assess the quality of 2754 DIA files based on those metrics. We develop an AI model for DIA-based QC using 2110 training files. It achieves AUCs of 0.91 (LC) and 0.97 (MS) in the first validation dataset (<i>n</i> = 528), and 0.78 (LC) and 0.94 (MS) in an independent validation dataset (<i>n</i> = 116). Finally, we develop an offline software called iDIA-QC for convenient adoption of this methodology.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"iDIA-QC: AI-empowered data-independent acquisition mass spectrometry-based quality control\",\"authors\":\"Huanhuan Gao, Yi Zhu, Dongxue Wang, Zongxiang Nie, He Wang, Guibin Wang, Shuang Liang, Yuting Xie, Yingying Sun, Wenhao Jiang, Zhen Dong, Liqin Qian, Xufei Wang, Mengdi Liang, Min Chen, Houqi Fang, Qiufang Zeng, Jiao Tian, Zeyu Sun, Juan Xue, Shan Li, Chen Chen, Xiang Liu, Xiaolei Lyu, Zhenchang Guo, Yingzi Qi, Ruoyu Wu, Xiaoxian Du, Tingde Tong, Fengchun Kong, Liming Han, Minghui Wang, Yang Zhao, Xinhua Dai, Fuchu He, Tiannan Guo\",\"doi\":\"10.1038/s41467-024-54871-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quality control (QC) in mass spectrometry (MS)-based proteomics is mainly based on data-dependent acquisition (DDA) analysis of standard samples. Here, we collect 2754 files acquired by data independent acquisition (DIA) and paired 2638 DDA files from mouse liver digests using 21 mass spectrometers across nine laboratories over 31 months. Our data demonstrate that DIA-based LC-MS/MS-related consensus QC metrics exhibit higher sensitivity compared to DDA-based QC metrics in detecting changes in LC-MS status. We then prioritize 15 metrics and invite 21 experts to manually assess the quality of 2754 DIA files based on those metrics. We develop an AI model for DIA-based QC using 2110 training files. It achieves AUCs of 0.91 (LC) and 0.97 (MS) in the first validation dataset (<i>n</i> = 528), and 0.78 (LC) and 0.94 (MS) in an independent validation dataset (<i>n</i> = 116). Finally, we develop an offline software called iDIA-QC for convenient adoption of this methodology.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54871-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54871-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于质谱(MS)的蛋白质组学的质量控制(QC)主要基于标准样品的数据依赖采集(DDA)分析。在这里,我们收集了数据独立采集(DIA)获得的2754个文件和配对的2638个DDA文件,这些文件来自9个实验室的21个质谱仪,历时31个月。我们的数据表明,与基于dda的QC指标相比,基于dia的LC-MS/ ms相关共识QC指标在检测LC-MS状态变化方面表现出更高的灵敏度。然后,我们对15个指标进行优先级排序,并邀请21位专家根据这些指标手动评估2754个DIA文件的质量。我们利用2110培训文件开发了一个基于dia的QC人工智能模型。在第一个验证数据集(n = 528)中实现了0.91 (LC)和0.97 (MS)的auc,在独立验证数据集(n = 116)中实现了0.78 (LC)和0.94 (MS)的auc。最后,我们开发了一个名为iDIA-QC的离线软件,以方便该方法的采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

iDIA-QC: AI-empowered data-independent acquisition mass spectrometry-based quality control

iDIA-QC: AI-empowered data-independent acquisition mass spectrometry-based quality control

Quality control (QC) in mass spectrometry (MS)-based proteomics is mainly based on data-dependent acquisition (DDA) analysis of standard samples. Here, we collect 2754 files acquired by data independent acquisition (DIA) and paired 2638 DDA files from mouse liver digests using 21 mass spectrometers across nine laboratories over 31 months. Our data demonstrate that DIA-based LC-MS/MS-related consensus QC metrics exhibit higher sensitivity compared to DDA-based QC metrics in detecting changes in LC-MS status. We then prioritize 15 metrics and invite 21 experts to manually assess the quality of 2754 DIA files based on those metrics. We develop an AI model for DIA-based QC using 2110 training files. It achieves AUCs of 0.91 (LC) and 0.97 (MS) in the first validation dataset (n = 528), and 0.78 (LC) and 0.94 (MS) in an independent validation dataset (n = 116). Finally, we develop an offline software called iDIA-QC for convenient adoption of this methodology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信