{"title":"一种适用于杂乱和受限环境的灵巧柔性空中连续机械臂","authors":"Rui Peng, Yu Wang, Minghao Lu, Peng Lu","doi":"10.1038/s41467-024-55157-2","DOIUrl":null,"url":null,"abstract":"<p>Aerial manipulators can manipulate objects while flying, allowing them to perform tasks in dangerous or inaccessible areas. Advanced aerial manipulation systems are often based on rigid-link mechanisms, but the balance between dexterity and payload capacity limits their broader application. Combining unmanned aerial vehicles with continuum manipulators emerges as a solution to this trade-off, but these systems face challenges with large actuation systems and unstable control. To address these challenges, we propose Aerial Elephant Trunk, an aerial continuum manipulator inspired by the elephant trunk, featuring a small-scale quadrotor and a dexterous, compliant tendon-driven continuum arm for versatile operation in both indoor and outdoor settings. We develop state estimation for the quadrotor using an Extended Kalman Filter, shape estimation for the continuum arm based on piecewise constant curvature, and whole-body motion planning using minimum jerk principles. Through comprehensive fundamental verifications, we demonstrate that our system can adapt to various constrained environments, such as navigating through narrow holes, tubes, or crevices, and can handle a range of objects, including slender, deformable, irregular, or heavy items. Our system can potentially be deployed in challenging conditions, such as pipeline maintenance or electricity line inspection at high altitudes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dexterous and compliant aerial continuum manipulator for cluttered and constrained environments\",\"authors\":\"Rui Peng, Yu Wang, Minghao Lu, Peng Lu\",\"doi\":\"10.1038/s41467-024-55157-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aerial manipulators can manipulate objects while flying, allowing them to perform tasks in dangerous or inaccessible areas. Advanced aerial manipulation systems are often based on rigid-link mechanisms, but the balance between dexterity and payload capacity limits their broader application. Combining unmanned aerial vehicles with continuum manipulators emerges as a solution to this trade-off, but these systems face challenges with large actuation systems and unstable control. To address these challenges, we propose Aerial Elephant Trunk, an aerial continuum manipulator inspired by the elephant trunk, featuring a small-scale quadrotor and a dexterous, compliant tendon-driven continuum arm for versatile operation in both indoor and outdoor settings. We develop state estimation for the quadrotor using an Extended Kalman Filter, shape estimation for the continuum arm based on piecewise constant curvature, and whole-body motion planning using minimum jerk principles. Through comprehensive fundamental verifications, we demonstrate that our system can adapt to various constrained environments, such as navigating through narrow holes, tubes, or crevices, and can handle a range of objects, including slender, deformable, irregular, or heavy items. Our system can potentially be deployed in challenging conditions, such as pipeline maintenance or electricity line inspection at high altitudes.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55157-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55157-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A dexterous and compliant aerial continuum manipulator for cluttered and constrained environments
Aerial manipulators can manipulate objects while flying, allowing them to perform tasks in dangerous or inaccessible areas. Advanced aerial manipulation systems are often based on rigid-link mechanisms, but the balance between dexterity and payload capacity limits their broader application. Combining unmanned aerial vehicles with continuum manipulators emerges as a solution to this trade-off, but these systems face challenges with large actuation systems and unstable control. To address these challenges, we propose Aerial Elephant Trunk, an aerial continuum manipulator inspired by the elephant trunk, featuring a small-scale quadrotor and a dexterous, compliant tendon-driven continuum arm for versatile operation in both indoor and outdoor settings. We develop state estimation for the quadrotor using an Extended Kalman Filter, shape estimation for the continuum arm based on piecewise constant curvature, and whole-body motion planning using minimum jerk principles. Through comprehensive fundamental verifications, we demonstrate that our system can adapt to various constrained environments, such as navigating through narrow holes, tubes, or crevices, and can handle a range of objects, including slender, deformable, irregular, or heavy items. Our system can potentially be deployed in challenging conditions, such as pipeline maintenance or electricity line inspection at high altitudes.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.