Antonia Habich, Verónica Chaves Vargas, Luca A. Robinson, Luke P. Allsopp, Daniel Unterweger
{"title":"铜绿假单胞菌四种VI型分泌系统的分布及其核心和辅助效应物的分类","authors":"Antonia Habich, Verónica Chaves Vargas, Luca A. Robinson, Luke P. Allsopp, Daniel Unterweger","doi":"10.1038/s41467-024-54649-5","DOIUrl":null,"url":null,"abstract":"<p>Bacterial type VI secretion systems (T6SSs) are puncturing molecular machines that transport effector proteins to kill microbes, manipulate eukaryotic cells, or facilitate nutrient uptake. How and why T6SS machines and effectors differ within a species is not fully understood. Here, we applied molecular population genetics to the T6SSs in a global population of the opportunistic pathogen <i>Pseudomonas aeruginosa</i>. We reveal varying occurrence of up to four distinct T6SS machines. Moreover, we define conserved core T6SS effectors, likely critical for the biology of <i>P. aeruginosa</i>, and accessory effectors that can exhibit mutual exclusivity between strains. By ancestral reconstruction, we observed dynamic changes in the gain and loss of effector genes in the species’ evolutionary history. Our work highlights the potential importance of T6SS intraspecific diversity in bacterial ecology and evolution.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"74 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of the four type VI secretion systems in Pseudomonas aeruginosa and classification of their core and accessory effectors\",\"authors\":\"Antonia Habich, Verónica Chaves Vargas, Luca A. Robinson, Luke P. Allsopp, Daniel Unterweger\",\"doi\":\"10.1038/s41467-024-54649-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bacterial type VI secretion systems (T6SSs) are puncturing molecular machines that transport effector proteins to kill microbes, manipulate eukaryotic cells, or facilitate nutrient uptake. How and why T6SS machines and effectors differ within a species is not fully understood. Here, we applied molecular population genetics to the T6SSs in a global population of the opportunistic pathogen <i>Pseudomonas aeruginosa</i>. We reveal varying occurrence of up to four distinct T6SS machines. Moreover, we define conserved core T6SS effectors, likely critical for the biology of <i>P. aeruginosa</i>, and accessory effectors that can exhibit mutual exclusivity between strains. By ancestral reconstruction, we observed dynamic changes in the gain and loss of effector genes in the species’ evolutionary history. Our work highlights the potential importance of T6SS intraspecific diversity in bacterial ecology and evolution.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54649-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54649-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Distribution of the four type VI secretion systems in Pseudomonas aeruginosa and classification of their core and accessory effectors
Bacterial type VI secretion systems (T6SSs) are puncturing molecular machines that transport effector proteins to kill microbes, manipulate eukaryotic cells, or facilitate nutrient uptake. How and why T6SS machines and effectors differ within a species is not fully understood. Here, we applied molecular population genetics to the T6SSs in a global population of the opportunistic pathogen Pseudomonas aeruginosa. We reveal varying occurrence of up to four distinct T6SS machines. Moreover, we define conserved core T6SS effectors, likely critical for the biology of P. aeruginosa, and accessory effectors that can exhibit mutual exclusivity between strains. By ancestral reconstruction, we observed dynamic changes in the gain and loss of effector genes in the species’ evolutionary history. Our work highlights the potential importance of T6SS intraspecific diversity in bacterial ecology and evolution.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.