有机自旋电子材料的室温自腔激光

IF 10 1区 物理与天体物理 Q1 OPTICS
Minna Zhang, Hao Wu, Xuri Yao, Jiyang Ma, Mark Oxborrow, Qing Zhao
{"title":"有机自旋电子材料的室温自腔激光","authors":"Minna Zhang,&nbsp;Hao Wu,&nbsp;Xuri Yao,&nbsp;Jiyang Ma,&nbsp;Mark Oxborrow,&nbsp;Qing Zhao","doi":"10.1002/lpor.202401820","DOIUrl":null,"url":null,"abstract":"<p>Crystal defects in solid-state spintronic materials play a crucial role in altering the optical properties of their hosts, enabling widespread applications in the field of quantum information processing. While the majority of the leading platforms are inorganic, they come with limitations such as the challenging material preparations and insufficient amount of active spins. Here, pentacene-doped <i>p</i>-terphenyl (Pc:Ptp), an organic spintronic material with easy preparations and tailorable functionalities normally used for microwave quantum electronics, is demonstrated for the first time its ability of self-cavity laser emission at room temperature. The laser emission is characterized by strong polarization and anisotropy, attributed to the unique packing of the doped molecules (i.e., active spins) within the crystal. The optical coherence is found to be a figure of merit to distinguish the processes of the amplified spontaneous emission (ASE) and lasing in Pc:Ptp. This work highlights the potential of Pc:Ptp as a compact and efficient platform for light-matter interactions, offering significant promise for enhancing the performance of solid-state quantum devices based on the organic spintronic material.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 8","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-Temperature Self-Cavity Lasing From Organic Spintronic Materials\",\"authors\":\"Minna Zhang,&nbsp;Hao Wu,&nbsp;Xuri Yao,&nbsp;Jiyang Ma,&nbsp;Mark Oxborrow,&nbsp;Qing Zhao\",\"doi\":\"10.1002/lpor.202401820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crystal defects in solid-state spintronic materials play a crucial role in altering the optical properties of their hosts, enabling widespread applications in the field of quantum information processing. While the majority of the leading platforms are inorganic, they come with limitations such as the challenging material preparations and insufficient amount of active spins. Here, pentacene-doped <i>p</i>-terphenyl (Pc:Ptp), an organic spintronic material with easy preparations and tailorable functionalities normally used for microwave quantum electronics, is demonstrated for the first time its ability of self-cavity laser emission at room temperature. The laser emission is characterized by strong polarization and anisotropy, attributed to the unique packing of the doped molecules (i.e., active spins) within the crystal. The optical coherence is found to be a figure of merit to distinguish the processes of the amplified spontaneous emission (ASE) and lasing in Pc:Ptp. This work highlights the potential of Pc:Ptp as a compact and efficient platform for light-matter interactions, offering significant promise for enhancing the performance of solid-state quantum devices based on the organic spintronic material.</p>\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"19 8\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202401820\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202401820","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

固体自旋电子材料中的晶体缺陷在改变其宿主的光学特性方面起着至关重要的作用,使其在量子信息处理领域得到了广泛的应用。虽然大多数领先的平台都是无机的,但它们存在一些局限性,例如具有挑战性的材料制备和活性自旋量不足。本研究首次证明了五苯掺杂对三苯基(Pc:Ptp)在室温下具有自腔激光发射的能力,这种有机自旋电子材料具有易于制备和可定制的功能,通常用于微波量子电子学。激光发射的特点是强极化和各向异性,这是由于掺杂分子在晶体内的独特包装(即活性自旋)。发现光相干性是区分Pc:Ptp中放大自发发射(ASE)和激光过程的一个重要指标。这项工作突出了Pc:Ptp作为光物质相互作用的紧凑高效平台的潜力,为增强基于有机自旋电子材料的固态量子器件的性能提供了重要的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Room-Temperature Self-Cavity Lasing From Organic Spintronic Materials

Room-Temperature Self-Cavity Lasing From Organic Spintronic Materials

Room-Temperature Self-Cavity Lasing From Organic Spintronic Materials

Crystal defects in solid-state spintronic materials play a crucial role in altering the optical properties of their hosts, enabling widespread applications in the field of quantum information processing. While the majority of the leading platforms are inorganic, they come with limitations such as the challenging material preparations and insufficient amount of active spins. Here, pentacene-doped p-terphenyl (Pc:Ptp), an organic spintronic material with easy preparations and tailorable functionalities normally used for microwave quantum electronics, is demonstrated for the first time its ability of self-cavity laser emission at room temperature. The laser emission is characterized by strong polarization and anisotropy, attributed to the unique packing of the doped molecules (i.e., active spins) within the crystal. The optical coherence is found to be a figure of merit to distinguish the processes of the amplified spontaneous emission (ASE) and lasing in Pc:Ptp. This work highlights the potential of Pc:Ptp as a compact and efficient platform for light-matter interactions, offering significant promise for enhancing the performance of solid-state quantum devices based on the organic spintronic material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信