通过自上而下的策略雕刻金属-有机-框架玻璃基固态电解质用于锂-金属电池

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Xiang, Ning Yu, Jianbo Li, Huixiang Xu, Shuang Chen, Yufan Xia, Zhen Luo, Xu Li, Zhu Liu, Maowen Xu, Yinzhu Jiang, Xuan Zhang
{"title":"通过自上而下的策略雕刻金属-有机-框架玻璃基固态电解质用于锂-金属电池","authors":"Yang Xiang,&nbsp;Ning Yu,&nbsp;Jianbo Li,&nbsp;Huixiang Xu,&nbsp;Shuang Chen,&nbsp;Yufan Xia,&nbsp;Zhen Luo,&nbsp;Xu Li,&nbsp;Zhu Liu,&nbsp;Maowen Xu,&nbsp;Yinzhu Jiang,&nbsp;Xuan Zhang","doi":"10.1002/anie.202424288","DOIUrl":null,"url":null,"abstract":"<p>Traditional polymer solid electrolytes (PSEs) suffer from low ions conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ions transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state <sup>7</sup>Li magic-angle-spinning nuclear magnetic resonance (MAS NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ions conductivity that increases and then decreases as macropore proportion rises. The introduced dispersed macropores (17 % fraction) can serve as bridges, connecting adjacent transport units to accelerate ions transport. Taking advantage of the cross-linked ion-conductive paths constructed by hierarchical pore structures, the PMG-GPE achieves a high ions conductivity of 1.9 mS cm<sup>−1</sup>. Additionally, the robust mechanical properties of PMG-GPE effectively suppress dendrite growth and penetration, outperforming crystal MOF-based electrolytes. The prepared Li symmetric batteries with PMG-GPE demonstrate a high critical current density of 5.1 mA cm<sup>−2</sup> (two times higher than crystal MOF-electrolytes) and stable cycling for over 6000 hours without short circuits. Furthermore, a Li/PMG-GPE/LFP half-cell exhibits exceptional capacity retention of 83.12 % after 1400 cycles. These findings highlight the potential of structural design in advancing PSE performance, offering a promising pathway for the commercialization of high-performance solid-state batteries.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 14","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carving Metal–Organic–Framework Glass Based Solid–State Electrolyte Via a Top–Down Strategy for Lithium–Metal Battery\",\"authors\":\"Yang Xiang,&nbsp;Ning Yu,&nbsp;Jianbo Li,&nbsp;Huixiang Xu,&nbsp;Shuang Chen,&nbsp;Yufan Xia,&nbsp;Zhen Luo,&nbsp;Xu Li,&nbsp;Zhu Liu,&nbsp;Maowen Xu,&nbsp;Yinzhu Jiang,&nbsp;Xuan Zhang\",\"doi\":\"10.1002/anie.202424288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional polymer solid electrolytes (PSEs) suffer from low ions conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ions transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state <sup>7</sup>Li magic-angle-spinning nuclear magnetic resonance (MAS NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ions conductivity that increases and then decreases as macropore proportion rises. The introduced dispersed macropores (17 % fraction) can serve as bridges, connecting adjacent transport units to accelerate ions transport. Taking advantage of the cross-linked ion-conductive paths constructed by hierarchical pore structures, the PMG-GPE achieves a high ions conductivity of 1.9 mS cm<sup>−1</sup>. Additionally, the robust mechanical properties of PMG-GPE effectively suppress dendrite growth and penetration, outperforming crystal MOF-based electrolytes. The prepared Li symmetric batteries with PMG-GPE demonstrate a high critical current density of 5.1 mA cm<sup>−2</sup> (two times higher than crystal MOF-electrolytes) and stable cycling for over 6000 hours without short circuits. Furthermore, a Li/PMG-GPE/LFP half-cell exhibits exceptional capacity retention of 83.12 % after 1400 cycles. These findings highlight the potential of structural design in advancing PSE performance, offering a promising pathway for the commercialization of high-performance solid-state batteries.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 14\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202424288\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202424288","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的聚合物固体电解质(pse)存在锂电导率低、动力学差和安全性问题。在这里,我们提出了一种新型的多孔MOF玻璃凝胶聚合物电解质(PMG-GPE),该电解质通过自上而下的策略制备,具有独特的三维互连梯度孔径结构,可用于高效离子传输。综合分析,包括飞行时间二次离子质谱(TOF-SIMS)、固态7Li魔角自旋核磁共振(MAS-NMR)、分子动力学(MD)模拟和电化学测试,量化了孔隙结构,揭示了它们与离子电导率的关系,随着大孔比例的增加,离子电导率先升高后降低。引入的分散大孔隙(17%)可以作为桥梁,连接相邻的输运单元,加速离子的输运。利用层次化孔结构构建的交联离子导电路径,PMG-GPE的离子电导率达到1.9 mS cm−1。此外,PMG-GPE坚固的力学性能有效地抑制了枝晶的生长和渗透,优于基于mof的晶体电解质。用PMG-GPE制备的锂对称电池显示出5.1 mA cm-2的高临界电流密度(比晶体mof电解质高两倍),并且稳定循环超过6000小时而不短路。此外,经过1400次循环后,Li/PMG-GPE/LFP半电池的容量保持率高达83.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carving Metal–Organic–Framework Glass Based Solid–State Electrolyte Via a Top–Down Strategy for Lithium–Metal Battery

Carving Metal–Organic–Framework Glass Based Solid–State Electrolyte Via a Top–Down Strategy for Lithium–Metal Battery

Traditional polymer solid electrolytes (PSEs) suffer from low ions conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ions transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ions conductivity that increases and then decreases as macropore proportion rises. The introduced dispersed macropores (17 % fraction) can serve as bridges, connecting adjacent transport units to accelerate ions transport. Taking advantage of the cross-linked ion-conductive paths constructed by hierarchical pore structures, the PMG-GPE achieves a high ions conductivity of 1.9 mS cm−1. Additionally, the robust mechanical properties of PMG-GPE effectively suppress dendrite growth and penetration, outperforming crystal MOF-based electrolytes. The prepared Li symmetric batteries with PMG-GPE demonstrate a high critical current density of 5.1 mA cm−2 (two times higher than crystal MOF-electrolytes) and stable cycling for over 6000 hours without short circuits. Furthermore, a Li/PMG-GPE/LFP half-cell exhibits exceptional capacity retention of 83.12 % after 1400 cycles. These findings highlight the potential of structural design in advancing PSE performance, offering a promising pathway for the commercialization of high-performance solid-state batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信