一般摄动下Navier-Stokes方程接触不连续的最优衰减率

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Lingjun Liu, Guiqin Qiu, Shu Wang, Lingda Xu
{"title":"一般摄动下Navier-Stokes方程接触不连续的最优衰减率","authors":"Lingjun Liu, Guiqin Qiu, Shu Wang, Lingda Xu","doi":"10.1016/j.aml.2025.109461","DOIUrl":null,"url":null,"abstract":"This paper investigates the large-time asymptotic behavior of contact waves in 1-D compressible Navier–Stokes equations. We derive the optimal decay rate for generic initial perturbations, meaning the perturbation’s integral does not need to be zero. It is well-known that generic perturbations in Navier–Stokes equations generate diffusion waves, implying that the optimal decay rate for contact waves in the <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msup></mml:math>-norm is <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>. However, the presence of diffusion waves introduces error terms, leading to energy growth in the anti-derivatives of the perturbations. Furthermore, studying contact waves depends on certain structural conditions, which hold for the original system but not for its derivative systems. This makes it challenging to obtain accurate estimates for the energy of the derivatives.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"22 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal decay rate to the contact discontinuity for Navier–Stokes equations under generic perturbations\",\"authors\":\"Lingjun Liu, Guiqin Qiu, Shu Wang, Lingda Xu\",\"doi\":\"10.1016/j.aml.2025.109461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the large-time asymptotic behavior of contact waves in 1-D compressible Navier–Stokes equations. We derive the optimal decay rate for generic initial perturbations, meaning the perturbation’s integral does not need to be zero. It is well-known that generic perturbations in Navier–Stokes equations generate diffusion waves, implying that the optimal decay rate for contact waves in the <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msup></mml:math>-norm is <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>. However, the presence of diffusion waves introduces error terms, leading to energy growth in the anti-derivatives of the perturbations. Furthermore, studying contact waves depends on certain structural conditions, which hold for the original system but not for its derivative systems. This makes it challenging to obtain accurate estimates for the energy of the derivatives.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2025.109461\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2025.109461","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一维可压缩纳维-斯托克斯方程中接触波的大时间渐近行为。我们推导了一般初始扰动的最佳衰减率,这意味着扰动的积分不一定为零。众所周知,纳维-斯托克斯方程中的一般扰动会产生扩散波,这意味着L∞正态下接触波的最佳衰减率为(1+t)-1/2。然而,扩散波的存在引入了误差项,导致扰动的反衍生物能量增长。此外,研究接触波取决于某些结构条件,这些条件对原始系统成立,但对其导数系统却不成立。这就使得获得导数能量的精确估计具有挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal decay rate to the contact discontinuity for Navier–Stokes equations under generic perturbations
This paper investigates the large-time asymptotic behavior of contact waves in 1-D compressible Navier–Stokes equations. We derive the optimal decay rate for generic initial perturbations, meaning the perturbation’s integral does not need to be zero. It is well-known that generic perturbations in Navier–Stokes equations generate diffusion waves, implying that the optimal decay rate for contact waves in the L-norm is (1+t)1/2. However, the presence of diffusion waves introduces error terms, leading to energy growth in the anti-derivatives of the perturbations. Furthermore, studying contact waves depends on certain structural conditions, which hold for the original system but not for its derivative systems. This makes it challenging to obtain accurate estimates for the energy of the derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信