{"title":"直接计算三维压电张量的c特征值","authors":"Huage Wang","doi":"10.1016/j.amc.2024.129269","DOIUrl":null,"url":null,"abstract":"In this paper, we derive explicit expressions to directly determine the C-eigenvalues and corresponding C-eigenvectors of the three-dimensional piezoelectric tensors through categorical discussions. We further validate the efficacy of this approach by solving the eigenvalues of three classic three-dimensional piezoelectric tensors using this method.","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"16 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculating the C-eigenvalues of the three-dimensional piezoelectric tensors directly\",\"authors\":\"Huage Wang\",\"doi\":\"10.1016/j.amc.2024.129269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive explicit expressions to directly determine the C-eigenvalues and corresponding C-eigenvectors of the three-dimensional piezoelectric tensors through categorical discussions. We further validate the efficacy of this approach by solving the eigenvalues of three classic three-dimensional piezoelectric tensors using this method.\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.amc.2024.129269\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.amc.2024.129269","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文通过分类讨论,推导出直接确定三维压电张量 C 特征值和相应 C 特征向量的明确表达式。通过使用这种方法求解三个经典三维压电张量的特征值,我们进一步验证了这种方法的有效性。
Calculating the C-eigenvalues of the three-dimensional piezoelectric tensors directly
In this paper, we derive explicit expressions to directly determine the C-eigenvalues and corresponding C-eigenvectors of the three-dimensional piezoelectric tensors through categorical discussions. We further validate the efficacy of this approach by solving the eigenvalues of three classic three-dimensional piezoelectric tensors using this method.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.