{"title":"离散[公式省略]-拉普拉斯方程的leighton - wintner型振荡定理","authors":"Kōdai Fujimoto, Kazuki Ishibashi, Masakazu Onitsuka","doi":"10.1016/j.aml.2025.109465","DOIUrl":null,"url":null,"abstract":"This paper addresses oscillation problems for difference equations with a discrete <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>-Laplacian. In general, applying the Riccati technique to discrete oscillations is difficult. However, this study established a Leighton–Wintner-type oscillation theorem using the Riccati technique. Three examples are provided to illustrate the results. In particular, we examined the oscillatory problem for a certain nonlinear difference equation, including the Harper model, and demonstrated that the solutions are oscillatory even when <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> diverges to infinity.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"15 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leighton–Wintner-type oscillation theorem for the discrete [formula omitted]-Laplacian\",\"authors\":\"Kōdai Fujimoto, Kazuki Ishibashi, Masakazu Onitsuka\",\"doi\":\"10.1016/j.aml.2025.109465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses oscillation problems for difference equations with a discrete <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>-Laplacian. In general, applying the Riccati technique to discrete oscillations is difficult. However, this study established a Leighton–Wintner-type oscillation theorem using the Riccati technique. Three examples are provided to illustrate the results. In particular, we examined the oscillatory problem for a certain nonlinear difference equation, including the Harper model, and demonstrated that the solutions are oscillatory even when <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> diverges to infinity.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2025.109465\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2025.109465","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Leighton–Wintner-type oscillation theorem for the discrete [formula omitted]-Laplacian
This paper addresses oscillation problems for difference equations with a discrete p(k)-Laplacian. In general, applying the Riccati technique to discrete oscillations is difficult. However, this study established a Leighton–Wintner-type oscillation theorem using the Riccati technique. Three examples are provided to illustrate the results. In particular, we examined the oscillatory problem for a certain nonlinear difference equation, including the Harper model, and demonstrated that the solutions are oscillatory even when p(k) diverges to infinity.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.