实矩阵指数与对偶矩阵指数的关系

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Chengdong Liu, Yimin Wei, Pengpeng Xie
{"title":"实矩阵指数与对偶矩阵指数的关系","authors":"Chengdong Liu, Yimin Wei, Pengpeng Xie","doi":"10.1016/j.aml.2025.109466","DOIUrl":null,"url":null,"abstract":"Dual number matrices play a significant role in engineering applications such as kinematics and dynamics. The matrix exponential is ubiquitous in screw-based kinematics. In this paper, we develop an explicit formula for the dual matrix exponential. The result is closely related to the Fréchet derivative, which can be formed by the standard part and dual part of the original matrix. We only need to compute the exponential of a real matrix. Then, we give a formula of computing the dual quaternion matrix exponential. Our results are illustrated through a practical example from robotic kinematics.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"23 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the relation between the exponential of real matrices and that of dual matrices\",\"authors\":\"Chengdong Liu, Yimin Wei, Pengpeng Xie\",\"doi\":\"10.1016/j.aml.2025.109466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual number matrices play a significant role in engineering applications such as kinematics and dynamics. The matrix exponential is ubiquitous in screw-based kinematics. In this paper, we develop an explicit formula for the dual matrix exponential. The result is closely related to the Fréchet derivative, which can be formed by the standard part and dual part of the original matrix. We only need to compute the exponential of a real matrix. Then, we give a formula of computing the dual quaternion matrix exponential. Our results are illustrated through a practical example from robotic kinematics.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2025.109466\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2025.109466","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

双数矩阵在运动学和动力学等工程应用中发挥着重要作用。矩阵指数在基于螺杆的运动学中无处不在。在本文中,我们为对偶矩阵指数建立了一个明确的公式。其结果与弗雷谢特导数密切相关,后者可由原始矩阵的标准部分和对偶部分构成。我们只需计算实矩阵的指数。然后,我们给出了计算对偶四元数矩阵指数的公式。我们将通过一个机器人运动学的实际例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the relation between the exponential of real matrices and that of dual matrices
Dual number matrices play a significant role in engineering applications such as kinematics and dynamics. The matrix exponential is ubiquitous in screw-based kinematics. In this paper, we develop an explicit formula for the dual matrix exponential. The result is closely related to the Fréchet derivative, which can be formed by the standard part and dual part of the original matrix. We only need to compute the exponential of a real matrix. Then, we give a formula of computing the dual quaternion matrix exponential. Our results are illustrated through a practical example from robotic kinematics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信