{"title":"印度半岛最长的河流(戈达瓦里河)中微塑料及其相关生态风险的评估:水、沉积物和鱼类的综合源-汇分析","authors":"Aniket Choudhary, Lukose George, Abhishek Mandal, Abhishek Biswas, Zahid Ahmad Ganie, Gopala Krishna Darbha","doi":"10.1016/j.marpolbul.2025.117560","DOIUrl":null,"url":null,"abstract":"Persistent microplastics (MPs) accumulation in the aqueous environments is considered a threat to the ecosystem, potentially harming aquatic species and human health. In view of the escalating problem of MPs pollution in India, a comprehensive investigation of MPs accumulation in major riverine systems is necessary. The current study aims to estimate MPs abundance in surface water, sediment, and fish samples along the entire stretch of Godavari, the largest river in peninsular India. Average MPs concentrations in water lie in the range of 311–939 MPs/m<ce:sup loc=\"post\">3</ce:sup> and 2–144 MPs/kg d.w. for sediment. Urban regions and dam reservoirs showed elevated MPs abundance, emphasizing the impact of anthropogenic activities. The μ-Raman analysis revealed PE and PP were the abundantly occurring polymers in all matrices. Polymer and ecological risk index identify most sampling sites as extremely high-risk zones, posing a potential threat to aquatic ecosystems and human health. Plotted t-SNE (t-distributed Stochastic Neighbour Embedding) revealed similarities in MPs morphology and compositions among water, sediment and fish samples. Examined MPs in edible (flesh+skin) and inedible parts (GIT and gills) of seven different fish species showed a higher average MPs abundance in edible parts (10.7 ± 14.9 MPs/fish) than gills (7 ± 8.1 MPs/fish) and GIT (6.6 ± 5.5 MPs/fish). This suggests that removing gills and GIT from fish doesn't eliminate the consumer's risk of MPs intake. Overall, our work highlights the significant MPs pollution in the Godavari River, further providing essential data on the ecological risk of MPs to guide municipal action plans, improve waste management, target high-risk areas, and raise awareness to mitigate impacts.","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"31 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of microplastics and associated ecological risk in the longest river (Godavari) of peninsular India: A comprehensive source-to-sink analysis in water, sediment and fish\",\"authors\":\"Aniket Choudhary, Lukose George, Abhishek Mandal, Abhishek Biswas, Zahid Ahmad Ganie, Gopala Krishna Darbha\",\"doi\":\"10.1016/j.marpolbul.2025.117560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistent microplastics (MPs) accumulation in the aqueous environments is considered a threat to the ecosystem, potentially harming aquatic species and human health. In view of the escalating problem of MPs pollution in India, a comprehensive investigation of MPs accumulation in major riverine systems is necessary. The current study aims to estimate MPs abundance in surface water, sediment, and fish samples along the entire stretch of Godavari, the largest river in peninsular India. Average MPs concentrations in water lie in the range of 311–939 MPs/m<ce:sup loc=\\\"post\\\">3</ce:sup> and 2–144 MPs/kg d.w. for sediment. Urban regions and dam reservoirs showed elevated MPs abundance, emphasizing the impact of anthropogenic activities. The μ-Raman analysis revealed PE and PP were the abundantly occurring polymers in all matrices. Polymer and ecological risk index identify most sampling sites as extremely high-risk zones, posing a potential threat to aquatic ecosystems and human health. Plotted t-SNE (t-distributed Stochastic Neighbour Embedding) revealed similarities in MPs morphology and compositions among water, sediment and fish samples. Examined MPs in edible (flesh+skin) and inedible parts (GIT and gills) of seven different fish species showed a higher average MPs abundance in edible parts (10.7 ± 14.9 MPs/fish) than gills (7 ± 8.1 MPs/fish) and GIT (6.6 ± 5.5 MPs/fish). This suggests that removing gills and GIT from fish doesn't eliminate the consumer's risk of MPs intake. Overall, our work highlights the significant MPs pollution in the Godavari River, further providing essential data on the ecological risk of MPs to guide municipal action plans, improve waste management, target high-risk areas, and raise awareness to mitigate impacts.\",\"PeriodicalId\":18215,\"journal\":{\"name\":\"Marine pollution bulletin\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine pollution bulletin\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.marpolbul.2025.117560\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marpolbul.2025.117560","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of microplastics and associated ecological risk in the longest river (Godavari) of peninsular India: A comprehensive source-to-sink analysis in water, sediment and fish
Persistent microplastics (MPs) accumulation in the aqueous environments is considered a threat to the ecosystem, potentially harming aquatic species and human health. In view of the escalating problem of MPs pollution in India, a comprehensive investigation of MPs accumulation in major riverine systems is necessary. The current study aims to estimate MPs abundance in surface water, sediment, and fish samples along the entire stretch of Godavari, the largest river in peninsular India. Average MPs concentrations in water lie in the range of 311–939 MPs/m3 and 2–144 MPs/kg d.w. for sediment. Urban regions and dam reservoirs showed elevated MPs abundance, emphasizing the impact of anthropogenic activities. The μ-Raman analysis revealed PE and PP were the abundantly occurring polymers in all matrices. Polymer and ecological risk index identify most sampling sites as extremely high-risk zones, posing a potential threat to aquatic ecosystems and human health. Plotted t-SNE (t-distributed Stochastic Neighbour Embedding) revealed similarities in MPs morphology and compositions among water, sediment and fish samples. Examined MPs in edible (flesh+skin) and inedible parts (GIT and gills) of seven different fish species showed a higher average MPs abundance in edible parts (10.7 ± 14.9 MPs/fish) than gills (7 ± 8.1 MPs/fish) and GIT (6.6 ± 5.5 MPs/fish). This suggests that removing gills and GIT from fish doesn't eliminate the consumer's risk of MPs intake. Overall, our work highlights the significant MPs pollution in the Godavari River, further providing essential data on the ecological risk of MPs to guide municipal action plans, improve waste management, target high-risk areas, and raise awareness to mitigate impacts.
期刊介绍:
Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.