Antti J. Moilanen, Moritz Cavigelli, Takashi Taniguchi, Kenji Watanabe, Lukas Novotny
{"title":"耦合等离子体晶格的二维半导体光致发光的电控制","authors":"Antti J. Moilanen, Moritz Cavigelli, Takashi Taniguchi, Kenji Watanabe, Lukas Novotny","doi":"10.1021/acsnano.4c15459","DOIUrl":null,"url":null,"abstract":"Integrating two-dimensional (2D) semiconductors into nanophotonic structures provides a versatile platform for advanced optoelectronic devices. A key challenge in realizing these systems is to achieve control over light emission from these materials. In this work, we demonstrate the modulation of photoluminescence (PL) in transition metal dichalcogenides (TMDs) coupled to surface lattice resonances in metal nanoparticle arrays. We show that both the intensity and the emission angle of light can be tuned by adjusting the lattice parameters. By applying gate electrodes to electrostatically dope the TMDs coupled to plasmonic lattices, we achieve PL intensity switching over 2 orders of magnitude with a low applied voltage. Our results represent an important step toward electrically powered and electrically tunable light sources based on 2D semiconductors.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"74 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Control of Photoluminescence in 2D Semiconductors Coupled to Plasmonic Lattices\",\"authors\":\"Antti J. Moilanen, Moritz Cavigelli, Takashi Taniguchi, Kenji Watanabe, Lukas Novotny\",\"doi\":\"10.1021/acsnano.4c15459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating two-dimensional (2D) semiconductors into nanophotonic structures provides a versatile platform for advanced optoelectronic devices. A key challenge in realizing these systems is to achieve control over light emission from these materials. In this work, we demonstrate the modulation of photoluminescence (PL) in transition metal dichalcogenides (TMDs) coupled to surface lattice resonances in metal nanoparticle arrays. We show that both the intensity and the emission angle of light can be tuned by adjusting the lattice parameters. By applying gate electrodes to electrostatically dope the TMDs coupled to plasmonic lattices, we achieve PL intensity switching over 2 orders of magnitude with a low applied voltage. Our results represent an important step toward electrically powered and electrically tunable light sources based on 2D semiconductors.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c15459\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15459","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrical Control of Photoluminescence in 2D Semiconductors Coupled to Plasmonic Lattices
Integrating two-dimensional (2D) semiconductors into nanophotonic structures provides a versatile platform for advanced optoelectronic devices. A key challenge in realizing these systems is to achieve control over light emission from these materials. In this work, we demonstrate the modulation of photoluminescence (PL) in transition metal dichalcogenides (TMDs) coupled to surface lattice resonances in metal nanoparticle arrays. We show that both the intensity and the emission angle of light can be tuned by adjusting the lattice parameters. By applying gate electrodes to electrostatically dope the TMDs coupled to plasmonic lattices, we achieve PL intensity switching over 2 orders of magnitude with a low applied voltage. Our results represent an important step toward electrically powered and electrically tunable light sources based on 2D semiconductors.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.