Jasmina Kubitschek, Vakil Takhaveev, Cécile Mingard, Martha I Rochlitz, Patricia B Reinert, Giulia Keller, Tom Kloter, Raúl Fernández Cereijo, Sabrina M Huber, Maureen McKeague, Shana J Sturla
{"title":"胶质母细胞瘤药物替莫唑胺中 O6-甲基鸟嘌呤的单核苷酸分辨率基因组图谱","authors":"Jasmina Kubitschek, Vakil Takhaveev, Cécile Mingard, Martha I Rochlitz, Patricia B Reinert, Giulia Keller, Tom Kloter, Raúl Fernández Cereijo, Sabrina M Huber, Maureen McKeague, Shana J Sturla","doi":"10.1093/nar/gkae1320","DOIUrl":null,"url":null,"abstract":"Temozolomide kills cancer cells by forming O6-methylguanine (O6-MeG), which leads to cell cycle arrest and apoptosis. However, O6-MeG repair by O6-methylguanine-DNA methyltransferase (MGMT) contributes to drug resistance. Characterizing genomic profiles of O6-MeG could elucidate how O6-MeG accumulation is influenced by repair, but there are no methods to map genomic locations of O6-MeG. Here, we developed an immunoprecipitation- and polymerase-stalling-based method, termed O6-MeG-seq, to locate O6-MeG across the whole genome at single-nucleotide resolution. We analyzed O6-MeG formation and repair across sequence contexts and functional genomic regions in relation to MGMT expression in a glioblastoma-derived cell line. O6-MeG signatures were highly similar to mutational signatures from patients previously treated with temozolomide. Furthermore, MGMT did not preferentially repair O6-MeG with respect to sequence context, chromatin state or gene expression level, however, may protect oncogenes from mutations. Finally, we found an MGMT-independent strand bias in O6-MeG accumulation in highly expressed genes. These data provide high resolution insight on how O6-MeG formation and repair are impacted by genome structure and nucleotide sequence. Further, O6-MeG-seq is expected to enable future studies of DNA modification signatures as diagnostic markers for addressing drug resistance and preventing secondary cancers.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"8 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-nucleotide-resolution genomic maps of O6-methylguanine from the glioblastoma drug temozolomide\",\"authors\":\"Jasmina Kubitschek, Vakil Takhaveev, Cécile Mingard, Martha I Rochlitz, Patricia B Reinert, Giulia Keller, Tom Kloter, Raúl Fernández Cereijo, Sabrina M Huber, Maureen McKeague, Shana J Sturla\",\"doi\":\"10.1093/nar/gkae1320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temozolomide kills cancer cells by forming O6-methylguanine (O6-MeG), which leads to cell cycle arrest and apoptosis. However, O6-MeG repair by O6-methylguanine-DNA methyltransferase (MGMT) contributes to drug resistance. Characterizing genomic profiles of O6-MeG could elucidate how O6-MeG accumulation is influenced by repair, but there are no methods to map genomic locations of O6-MeG. Here, we developed an immunoprecipitation- and polymerase-stalling-based method, termed O6-MeG-seq, to locate O6-MeG across the whole genome at single-nucleotide resolution. We analyzed O6-MeG formation and repair across sequence contexts and functional genomic regions in relation to MGMT expression in a glioblastoma-derived cell line. O6-MeG signatures were highly similar to mutational signatures from patients previously treated with temozolomide. Furthermore, MGMT did not preferentially repair O6-MeG with respect to sequence context, chromatin state or gene expression level, however, may protect oncogenes from mutations. Finally, we found an MGMT-independent strand bias in O6-MeG accumulation in highly expressed genes. These data provide high resolution insight on how O6-MeG formation and repair are impacted by genome structure and nucleotide sequence. Further, O6-MeG-seq is expected to enable future studies of DNA modification signatures as diagnostic markers for addressing drug resistance and preventing secondary cancers.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1320\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1320","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single-nucleotide-resolution genomic maps of O6-methylguanine from the glioblastoma drug temozolomide
Temozolomide kills cancer cells by forming O6-methylguanine (O6-MeG), which leads to cell cycle arrest and apoptosis. However, O6-MeG repair by O6-methylguanine-DNA methyltransferase (MGMT) contributes to drug resistance. Characterizing genomic profiles of O6-MeG could elucidate how O6-MeG accumulation is influenced by repair, but there are no methods to map genomic locations of O6-MeG. Here, we developed an immunoprecipitation- and polymerase-stalling-based method, termed O6-MeG-seq, to locate O6-MeG across the whole genome at single-nucleotide resolution. We analyzed O6-MeG formation and repair across sequence contexts and functional genomic regions in relation to MGMT expression in a glioblastoma-derived cell line. O6-MeG signatures were highly similar to mutational signatures from patients previously treated with temozolomide. Furthermore, MGMT did not preferentially repair O6-MeG with respect to sequence context, chromatin state or gene expression level, however, may protect oncogenes from mutations. Finally, we found an MGMT-independent strand bias in O6-MeG accumulation in highly expressed genes. These data provide high resolution insight on how O6-MeG formation and repair are impacted by genome structure and nucleotide sequence. Further, O6-MeG-seq is expected to enable future studies of DNA modification signatures as diagnostic markers for addressing drug resistance and preventing secondary cancers.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.