纳米气泡同时提高污泥温度相厌氧消化的水解和甲烷产率

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Ziying Xu, Tianfeng Wang, Cheng Peng, Yutong Feng, Xin Fan, Xuan Yang, Wenqi Gao, Qingfang Zhang
{"title":"纳米气泡同时提高污泥温度相厌氧消化的水解和甲烷产率","authors":"Ziying Xu, Tianfeng Wang, Cheng Peng, Yutong Feng, Xin Fan, Xuan Yang, Wenqi Gao, Qingfang Zhang","doi":"10.1016/j.biortech.2025.132084","DOIUrl":null,"url":null,"abstract":"Nanobubble water (NBW) or temperature-phased anaerobic digestion assisted by microbial electrolysis cell (MEC-TPAD) can promote sludge hydrolysis and methanogenesis. However, the role of the combined application of NBW and MEC-TPAD in terms of anaerobic performance and related microbial properties remains unclear. This study investigated the impact of Air-NBW on hydrolysis and methanogenesis of dewatered sludge MEC-TPAD. Under different temperatures, NBW increased ammonia nitrogen by 7.8%-13.7% in the hydrolysis phase and ultimate methane yield by 23.3%-41.5%. NBW can significantly promote hydrolysis under mesophilic-mesophilic conditions, while it can promote substantially methanogenesis under thermophilic-thermophilic conditions. Moreover, NBW increased the diversity and richness of microorganisms in hydrolysis. As to bacteria, NBW increased the relative abundance (RA) of <ce:italic>Firmicutes</ce:italic> but decreased the RA of <ce:italic>Proteobacteria</ce:italic>. As to archaea, NBW increased the RA of <ce:italic>Methanosarcina</ce:italic> in hydrolysis but decreased it in methanogenesis. NBW synchronized with MEC-TPAD improved hydrolysis and methanogenesis of the dewatered sludge digestion process.","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"13 1","pages":"132084"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air nanobubble simultaneously enhances hydrolysis and methane yield of sludge temperature phased-anaerobic digestion\",\"authors\":\"Ziying Xu, Tianfeng Wang, Cheng Peng, Yutong Feng, Xin Fan, Xuan Yang, Wenqi Gao, Qingfang Zhang\",\"doi\":\"10.1016/j.biortech.2025.132084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanobubble water (NBW) or temperature-phased anaerobic digestion assisted by microbial electrolysis cell (MEC-TPAD) can promote sludge hydrolysis and methanogenesis. However, the role of the combined application of NBW and MEC-TPAD in terms of anaerobic performance and related microbial properties remains unclear. This study investigated the impact of Air-NBW on hydrolysis and methanogenesis of dewatered sludge MEC-TPAD. Under different temperatures, NBW increased ammonia nitrogen by 7.8%-13.7% in the hydrolysis phase and ultimate methane yield by 23.3%-41.5%. NBW can significantly promote hydrolysis under mesophilic-mesophilic conditions, while it can promote substantially methanogenesis under thermophilic-thermophilic conditions. Moreover, NBW increased the diversity and richness of microorganisms in hydrolysis. As to bacteria, NBW increased the relative abundance (RA) of <ce:italic>Firmicutes</ce:italic> but decreased the RA of <ce:italic>Proteobacteria</ce:italic>. As to archaea, NBW increased the RA of <ce:italic>Methanosarcina</ce:italic> in hydrolysis but decreased it in methanogenesis. NBW synchronized with MEC-TPAD improved hydrolysis and methanogenesis of the dewatered sludge digestion process.\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"13 1\",\"pages\":\"132084\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.132084\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132084","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

纳米泡水(NBW)或微生物电解池(MEC-TPAD)辅助的温度阶段厌氧消化可以促进污泥水解和甲烷生成。然而,NBW和MEC-TPAD联合应用在厌氧性能和相关微生物特性方面的作用尚不清楚。研究了空气- nbw对脱水污泥MEC-TPAD水解产甲烷的影响。在不同温度下,NBW可使水解阶段氨氮提高7.8% ~ 13.7%,最终甲烷产率提高23.3% ~ 41.5%。NBW在中温-中温条件下能显著促进水解,而在嗜热-嗜热条件下能显著促进产甲烷。此外,NBW增加了水解微生物的多样性和丰富度。在细菌方面,NBW增加了厚壁菌门的相对丰度,降低了变形菌门的相对丰度。对古菌而言,NBW提高了甲烷菌水解的RA,但降低了甲烷生成的RA。与MEC-TPAD同步的NBW改善了脱水污泥消化过程的水解和产甲烷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air nanobubble simultaneously enhances hydrolysis and methane yield of sludge temperature phased-anaerobic digestion
Nanobubble water (NBW) or temperature-phased anaerobic digestion assisted by microbial electrolysis cell (MEC-TPAD) can promote sludge hydrolysis and methanogenesis. However, the role of the combined application of NBW and MEC-TPAD in terms of anaerobic performance and related microbial properties remains unclear. This study investigated the impact of Air-NBW on hydrolysis and methanogenesis of dewatered sludge MEC-TPAD. Under different temperatures, NBW increased ammonia nitrogen by 7.8%-13.7% in the hydrolysis phase and ultimate methane yield by 23.3%-41.5%. NBW can significantly promote hydrolysis under mesophilic-mesophilic conditions, while it can promote substantially methanogenesis under thermophilic-thermophilic conditions. Moreover, NBW increased the diversity and richness of microorganisms in hydrolysis. As to bacteria, NBW increased the relative abundance (RA) of Firmicutes but decreased the RA of Proteobacteria. As to archaea, NBW increased the RA of Methanosarcina in hydrolysis but decreased it in methanogenesis. NBW synchronized with MEC-TPAD improved hydrolysis and methanogenesis of the dewatered sludge digestion process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信