Kang Zhang, Xin Yang, Yifei Wang, Yunfang Yu, Niu Huang, Gen Li, Xiaokun Li, Joseph C. Wu, Shengyong Yang
{"title":"Artificial intelligence in drug development","authors":"Kang Zhang, Xin Yang, Yifei Wang, Yunfang Yu, Niu Huang, Gen Li, Xiaokun Li, Joseph C. Wu, Shengyong Yang","doi":"10.1038/s41591-024-03434-4","DOIUrl":null,"url":null,"abstract":"Drug development is a complex and time-consuming endeavor that traditionally relies on the experience of drug developers and trial-and-error experimentation. The advent of artificial intelligence (AI) technologies, particularly emerging large language models and generative AI, is poised to redefine this paradigm. The integration of AI-driven methodologies into the drug development pipeline has already heralded subtle yet meaningful enhancements in both the efficiency and effectiveness of this process. Here we present an overview of recent advancements in AI applications across the entire drug development workflow, encompassing the identification of disease targets, drug discovery, preclinical and clinical studies, and post-market surveillance. Lastly, we critically examine the prevailing challenges to highlight promising future research directions in AI-augmented drug development. This Review explores the state-of-the-art applications of artificial intelligence in small-molecule drug development, from target identification and drug synthesis up to clinical trial design and conduct.","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"31 1","pages":"45-59"},"PeriodicalIF":58.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41591-024-03434-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Drug development is a complex and time-consuming endeavor that traditionally relies on the experience of drug developers and trial-and-error experimentation. The advent of artificial intelligence (AI) technologies, particularly emerging large language models and generative AI, is poised to redefine this paradigm. The integration of AI-driven methodologies into the drug development pipeline has already heralded subtle yet meaningful enhancements in both the efficiency and effectiveness of this process. Here we present an overview of recent advancements in AI applications across the entire drug development workflow, encompassing the identification of disease targets, drug discovery, preclinical and clinical studies, and post-market surveillance. Lastly, we critically examine the prevailing challenges to highlight promising future research directions in AI-augmented drug development. This Review explores the state-of-the-art applications of artificial intelligence in small-molecule drug development, from target identification and drug synthesis up to clinical trial design and conduct.
期刊介绍:
Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors.
Nature Medicine consider all types of clinical research, including:
-Case-reports and small case series
-Clinical trials, whether phase 1, 2, 3 or 4
-Observational studies
-Meta-analyses
-Biomarker studies
-Public and global health studies
Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.