Cre-Lox microRNA递送技术优化用于斑马鱼诱导microRNA和基因沉默研究

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fangfei Guo, Alisha Tromp, Haitao Wang, Thomas E Hall, Jean Giacomotto
{"title":"Cre-Lox microRNA递送技术优化用于斑马鱼诱导microRNA和基因沉默研究","authors":"Fangfei Guo, Alisha Tromp, Haitao Wang, Thomas E Hall, Jean Giacomotto","doi":"10.1093/nar/gkaf004","DOIUrl":null,"url":null,"abstract":"While many genetic tools exist for zebrafish, this animal model still lacks robust gene-silencing and microRNA-delivery technologies enabling spatio-temporal control and traceability. We have recently demonstrated that engineered pri-miR backbones can trigger stable gene knockdown and/or express microRNA(s) of choice in this organism. However, this miRNA-expressing technology presents important limitations. First, to trigger potent knockdown(s), multiple synthetic-miRNAs must be expressed simultaneously, compromising the co-expression of fluorescent marker(s) and knockdown traceability. Second, when gene(s) knockdown triggers significant phenotypes, like homozygous mutants with severe early phenotypes, it is difficult, if not impossible, to maintain transgenic carriers. To solve these problems and provide a mature RNAi and microRNA-delivery technology, we have generated new RNAi reagents and an inducible delivery system based on the Cre/Lox technology. This system allows the creation of asymptomatic/silent carriers, easing the production of embryos with potent knockdowns that can be traced and spatiotemporally controlled. We further demonstrated the utility of this approach by establishing novel inducible and tissue-specific models of spinal muscular atrophy, opening new avenues for studying smn1-gene function and pathogenicity. All in all, these materials and techniques will be invaluable in studying microRNA biology and in modelling or tackling conditions in which gene dosage is key.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"13 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cre-Lox miRNA-delivery technology optimized for inducible microRNA and gene-silencing studies in zebrafish\",\"authors\":\"Fangfei Guo, Alisha Tromp, Haitao Wang, Thomas E Hall, Jean Giacomotto\",\"doi\":\"10.1093/nar/gkaf004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While many genetic tools exist for zebrafish, this animal model still lacks robust gene-silencing and microRNA-delivery technologies enabling spatio-temporal control and traceability. We have recently demonstrated that engineered pri-miR backbones can trigger stable gene knockdown and/or express microRNA(s) of choice in this organism. However, this miRNA-expressing technology presents important limitations. First, to trigger potent knockdown(s), multiple synthetic-miRNAs must be expressed simultaneously, compromising the co-expression of fluorescent marker(s) and knockdown traceability. Second, when gene(s) knockdown triggers significant phenotypes, like homozygous mutants with severe early phenotypes, it is difficult, if not impossible, to maintain transgenic carriers. To solve these problems and provide a mature RNAi and microRNA-delivery technology, we have generated new RNAi reagents and an inducible delivery system based on the Cre/Lox technology. This system allows the creation of asymptomatic/silent carriers, easing the production of embryos with potent knockdowns that can be traced and spatiotemporally controlled. We further demonstrated the utility of this approach by establishing novel inducible and tissue-specific models of spinal muscular atrophy, opening new avenues for studying smn1-gene function and pathogenicity. All in all, these materials and techniques will be invaluable in studying microRNA biology and in modelling or tackling conditions in which gene dosage is key.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然斑马鱼有许多遗传工具,但这种动物模型仍然缺乏强大的基因沉默和 microRNA 递送技术,无法实现时空控制和可追溯性。我们最近证明,工程化的 pri-miR 骨架可在该生物体内引发稳定的基因敲除和/或表达所选择的 microRNA。然而,这种表达 miRNA 的技术存在一些重要的局限性。首先,要触发强效基因敲除,必须同时表达多个合成 miRNA,这就影响了荧光标记的共同表达和基因敲除的可追溯性。其次,当基因敲除引发显著表型时,如具有严重早期表型的同源突变体,很难甚至不可能维持转基因载体。为了解决这些问题并提供成熟的 RNAi 和 microRNA 递送技术,我们在 Cre/Lox 技术的基础上开发了新的 RNAi 试剂和可诱导递送系统。这种系统可以制造无症状/无声的载体,从而更容易制造出具有强效基因敲除的胚胎,并且可以进行追踪和时空控制。我们通过建立新型诱导性和组织特异性脊髓性肌萎缩症模型进一步证明了这种方法的实用性,为研究 smn1 基因的功能和致病性开辟了新途径。总之,这些材料和技术对于研究 microRNA 生物学以及模拟或处理基因剂量是关键的病症将是非常有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cre-Lox miRNA-delivery technology optimized for inducible microRNA and gene-silencing studies in zebrafish
While many genetic tools exist for zebrafish, this animal model still lacks robust gene-silencing and microRNA-delivery technologies enabling spatio-temporal control and traceability. We have recently demonstrated that engineered pri-miR backbones can trigger stable gene knockdown and/or express microRNA(s) of choice in this organism. However, this miRNA-expressing technology presents important limitations. First, to trigger potent knockdown(s), multiple synthetic-miRNAs must be expressed simultaneously, compromising the co-expression of fluorescent marker(s) and knockdown traceability. Second, when gene(s) knockdown triggers significant phenotypes, like homozygous mutants with severe early phenotypes, it is difficult, if not impossible, to maintain transgenic carriers. To solve these problems and provide a mature RNAi and microRNA-delivery technology, we have generated new RNAi reagents and an inducible delivery system based on the Cre/Lox technology. This system allows the creation of asymptomatic/silent carriers, easing the production of embryos with potent knockdowns that can be traced and spatiotemporally controlled. We further demonstrated the utility of this approach by establishing novel inducible and tissue-specific models of spinal muscular atrophy, opening new avenues for studying smn1-gene function and pathogenicity. All in all, these materials and techniques will be invaluable in studying microRNA biology and in modelling or tackling conditions in which gene dosage is key.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信