通过氧空位驱动的金属有机框架在 BiVO4 上的分子外延生长提高光催化效率

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yulei Xin, Jian Tian, Xianqiang Xiong, Chenglin Wu, Sónia A.C. Carabineiro, Xiaogang Yang, Zhangxing Chen, Yang Xia, Yanxian Jin
{"title":"通过氧空位驱动的金属有机框架在 BiVO4 上的分子外延生长提高光催化效率","authors":"Yulei Xin,&nbsp;Jian Tian,&nbsp;Xianqiang Xiong,&nbsp;Chenglin Wu,&nbsp;Sónia A.C. Carabineiro,&nbsp;Xiaogang Yang,&nbsp;Zhangxing Chen,&nbsp;Yang Xia,&nbsp;Yanxian Jin","doi":"10.1002/adma.202417589","DOIUrl":null,"url":null,"abstract":"<p>Efficient charge separation at the semiconductor/cocatalyst interface is crucial for high-performance photoelectrodes, as it directly influences the availability of surface charges for solar water oxidation. However, establishing strong molecular-level connections between these interfaces to achieve superior interfacial quality presents significant challenges. This study introduces an innovative electrochemical etching method that generates a high concentration of oxygen vacancy sites on BiVO<sub>4</sub> surfaces (Ov-BiVO<sub>4</sub>), enabling interactions with the oxygen-rich ligands of MIL-101. This reduces the formation energy and promotes conformal growth on BiVO<sub>4</sub>. The Ov-BiVO<sub>4</sub>/MIL-101 composite exhibits an ideal semiconductor/cocatalyst interface, achieving an impressive photocurrent density of 5.91 mA cm<sup>−2</sup> at 1.23 V<sub>RHE</sub>, along with excellent stability. This high-performing photoanode enables an unbiased tandem device with an Ov-BiVO<sub>4</sub>/MIL-101-Si solar cell system, achieving a solar-to-hydrogen efficiency of 4.33%. The molecular-level integration mitigates surface states and enhances the internal electric field, facilitating the migration of photogenerated holes into the MIL-101 overlayer. This process activates highly efficient Fe catalytic sites, which effectively adsorb water molecules, lowering the energy barrier for water oxidation and improving interfacial kinetics. Further studies confirm the broad applicability of oxygen vacancy-induced molecular epitaxial growth in various MOFs, offering valuable insights into defect engineering for optimizing interfaces and enhancing photocatalytic activity.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 9","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Photocatalytic Efficiency Through Oxygen Vacancy-Driven Molecular Epitaxial Growth of Metal–Organic Frameworks on BiVO4\",\"authors\":\"Yulei Xin,&nbsp;Jian Tian,&nbsp;Xianqiang Xiong,&nbsp;Chenglin Wu,&nbsp;Sónia A.C. Carabineiro,&nbsp;Xiaogang Yang,&nbsp;Zhangxing Chen,&nbsp;Yang Xia,&nbsp;Yanxian Jin\",\"doi\":\"10.1002/adma.202417589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient charge separation at the semiconductor/cocatalyst interface is crucial for high-performance photoelectrodes, as it directly influences the availability of surface charges for solar water oxidation. However, establishing strong molecular-level connections between these interfaces to achieve superior interfacial quality presents significant challenges. This study introduces an innovative electrochemical etching method that generates a high concentration of oxygen vacancy sites on BiVO<sub>4</sub> surfaces (Ov-BiVO<sub>4</sub>), enabling interactions with the oxygen-rich ligands of MIL-101. This reduces the formation energy and promotes conformal growth on BiVO<sub>4</sub>. The Ov-BiVO<sub>4</sub>/MIL-101 composite exhibits an ideal semiconductor/cocatalyst interface, achieving an impressive photocurrent density of 5.91 mA cm<sup>−2</sup> at 1.23 V<sub>RHE</sub>, along with excellent stability. This high-performing photoanode enables an unbiased tandem device with an Ov-BiVO<sub>4</sub>/MIL-101-Si solar cell system, achieving a solar-to-hydrogen efficiency of 4.33%. The molecular-level integration mitigates surface states and enhances the internal electric field, facilitating the migration of photogenerated holes into the MIL-101 overlayer. This process activates highly efficient Fe catalytic sites, which effectively adsorb water molecules, lowering the energy barrier for water oxidation and improving interfacial kinetics. Further studies confirm the broad applicability of oxygen vacancy-induced molecular epitaxial growth in various MOFs, offering valuable insights into defect engineering for optimizing interfaces and enhancing photocatalytic activity.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 9\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202417589\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202417589","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

半导体/助催化剂界面的高效电荷分离对于高性能光电极至关重要,因为它直接影响太阳能水氧化表面电荷的可用性。然而,在这些界面之间建立强大的分子水平连接以实现卓越的界面质量提出了重大挑战。本研究介绍了一种创新的电化学蚀刻方法,该方法在BiVO4表面(Ov - BiVO4)上产生高浓度的氧空位位点,使其能够与MIL - 101的富氧配体相互作用。这降低了地层能量,促进了BiVO4上的保形生长。Ov - BiVO4/MIL - 101复合材料表现出理想的半导体/助催化剂界面,在1.23 VRHE下实现了令人印象深刻的5.91 mA cm - 2光电流密度,以及出色的稳定性。这种高性能的光阳极使Ov - BiVO4/MIL - 101 - Si太阳能电池系统的无偏串联器件成为可能,实现了4.33%的太阳能-氢效率。分子水平的集成减轻了表面状态,增强了内部电场,促进了光生空穴向MIL - 101覆盖层的迁移。这一过程激活了高效的Fe催化位点,有效地吸附了水分子,降低了水氧化的能垒,改善了界面动力学。进一步的研究证实了氧空位诱导的分子外延生长在各种mof中的广泛适用性,为优化界面和增强光催化活性的缺陷工程提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Photocatalytic Efficiency Through Oxygen Vacancy-Driven Molecular Epitaxial Growth of Metal–Organic Frameworks on BiVO4

Enhanced Photocatalytic Efficiency Through Oxygen Vacancy-Driven Molecular Epitaxial Growth of Metal–Organic Frameworks on BiVO4

Efficient charge separation at the semiconductor/cocatalyst interface is crucial for high-performance photoelectrodes, as it directly influences the availability of surface charges for solar water oxidation. However, establishing strong molecular-level connections between these interfaces to achieve superior interfacial quality presents significant challenges. This study introduces an innovative electrochemical etching method that generates a high concentration of oxygen vacancy sites on BiVO4 surfaces (Ov-BiVO4), enabling interactions with the oxygen-rich ligands of MIL-101. This reduces the formation energy and promotes conformal growth on BiVO4. The Ov-BiVO4/MIL-101 composite exhibits an ideal semiconductor/cocatalyst interface, achieving an impressive photocurrent density of 5.91 mA cm−2 at 1.23 VRHE, along with excellent stability. This high-performing photoanode enables an unbiased tandem device with an Ov-BiVO4/MIL-101-Si solar cell system, achieving a solar-to-hydrogen efficiency of 4.33%. The molecular-level integration mitigates surface states and enhances the internal electric field, facilitating the migration of photogenerated holes into the MIL-101 overlayer. This process activates highly efficient Fe catalytic sites, which effectively adsorb water molecules, lowering the energy barrier for water oxidation and improving interfacial kinetics. Further studies confirm the broad applicability of oxygen vacancy-induced molecular epitaxial growth in various MOFs, offering valuable insights into defect engineering for optimizing interfaces and enhancing photocatalytic activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信