基于铁卟啉的多孔催化剂的仿生构建促进氮电氧化制硝酸盐

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongming He, Shan Zhang, Yaxuan An, Qing Li, Xinyi Wang, Mingkai Xu, Cheng-Peng Li, Xinyue Yang, Yatian Zhao, Quanshun Li, Ye Yuan
{"title":"基于铁卟啉的多孔催化剂的仿生构建促进氮电氧化制硝酸盐","authors":"Hongming He,&nbsp;Shan Zhang,&nbsp;Yaxuan An,&nbsp;Qing Li,&nbsp;Xinyi Wang,&nbsp;Mingkai Xu,&nbsp;Cheng-Peng Li,&nbsp;Xinyue Yang,&nbsp;Yatian Zhao,&nbsp;Quanshun Li,&nbsp;Ye Yuan","doi":"10.1002/adfm.202424779","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic N<sub>2</sub> oxidation reaction (NOR) is an environmentally sustainable approach to synthesize NO<sub>3</sub><sup>−</sup> under mild conditions. Inspired by the ferriporphyrin (FePP) catalytic species in nitrite oxidoreductase, three FePP-based biomimetic catalysts with different functional groups (─NH<sub>2</sub>, ─H, and ─COOCH<sub>3</sub>) are designed and prepared successfully. Theoretical calculations indicate that these functional groups can alter the electron density of Fe catalytic center, affecting their ability to adsorb and activate N<sub>2</sub>. The strong electron-donating ability of ─NH<sub>2</sub> group can enhance the electron density of iron sites, which reveals a maximum NO<sub>3</sub><sup>−</sup> yield of 728.55 µmol h<sup>−1</sup> g<sub>FePP</sub><sup>−1</sup> and a high Faradaic efficiency of 10.6%. After that, the optimized FePP molecules can be encapsulated into ZIF-8, which remarkably promoted the N<sub>2</sub>─to─NO<sub>3</sub><sup>−</sup> transformation with a NO<sub>3</sub><sup>−</sup> production rate of 1767.74 µmol h<sup>−1</sup> g<sub>FePP</sub><sup>−1</sup>, achieving the highest catalytic effect among metalloporphyrin-based molecular catalysts under mild conditions. This work develops an available biomimetic approach to modulate the electron distribution of active metal sites and confine catalytic species into porous crystalline materials for constructing high-performance NOR electrocatalysts.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 22","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Construction of Ferriporphyrin-Based Porous Catalysts for Boosting Nitrogen Electroxidation to Nitrate\",\"authors\":\"Hongming He,&nbsp;Shan Zhang,&nbsp;Yaxuan An,&nbsp;Qing Li,&nbsp;Xinyi Wang,&nbsp;Mingkai Xu,&nbsp;Cheng-Peng Li,&nbsp;Xinyue Yang,&nbsp;Yatian Zhao,&nbsp;Quanshun Li,&nbsp;Ye Yuan\",\"doi\":\"10.1002/adfm.202424779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrocatalytic N<sub>2</sub> oxidation reaction (NOR) is an environmentally sustainable approach to synthesize NO<sub>3</sub><sup>−</sup> under mild conditions. Inspired by the ferriporphyrin (FePP) catalytic species in nitrite oxidoreductase, three FePP-based biomimetic catalysts with different functional groups (─NH<sub>2</sub>, ─H, and ─COOCH<sub>3</sub>) are designed and prepared successfully. Theoretical calculations indicate that these functional groups can alter the electron density of Fe catalytic center, affecting their ability to adsorb and activate N<sub>2</sub>. The strong electron-donating ability of ─NH<sub>2</sub> group can enhance the electron density of iron sites, which reveals a maximum NO<sub>3</sub><sup>−</sup> yield of 728.55 µmol h<sup>−1</sup> g<sub>FePP</sub><sup>−1</sup> and a high Faradaic efficiency of 10.6%. After that, the optimized FePP molecules can be encapsulated into ZIF-8, which remarkably promoted the N<sub>2</sub>─to─NO<sub>3</sub><sup>−</sup> transformation with a NO<sub>3</sub><sup>−</sup> production rate of 1767.74 µmol h<sup>−1</sup> g<sub>FePP</sub><sup>−1</sup>, achieving the highest catalytic effect among metalloporphyrin-based molecular catalysts under mild conditions. This work develops an available biomimetic approach to modulate the electron distribution of active metal sites and confine catalytic species into porous crystalline materials for constructing high-performance NOR electrocatalysts.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 22\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202424779\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202424779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化N2氧化反应(NOR)是一种在温和条件下合成NO3−的环境可持续方法。受亚硝酸盐氧化还原酶中铁卟啉(FePP)催化物质的启发,设计并成功制备了三种具有不同官能团(─NH2、─H和─COOCH3)的FePP仿生催化剂。理论计算表明,这些官能团可以改变Fe催化中心的电子密度,影响其吸附和活化N2的能力。NH2基团较强的供电子能力增强了铁离子位的电子密度,最大NO3−产率为728.55µmol h−1 gFePP−1,法拉第效率为10.6%。优化后的FePP分子可以包封在ZIF‐8中,显著促进了N2──到─NO3−的转化,NO3−的产率为1767.74µmol h−1 gFePP−1,在温和条件下达到了金属卟啉类分子催化剂中最高的催化效果。这项工作开发了一种有效的仿生方法来调节活性金属位点的电子分布,并将催化物质限制在多孔晶体材料中,以构建高性能的NOR电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomimetic Construction of Ferriporphyrin-Based Porous Catalysts for Boosting Nitrogen Electroxidation to Nitrate

Electrocatalytic N2 oxidation reaction (NOR) is an environmentally sustainable approach to synthesize NO3 under mild conditions. Inspired by the ferriporphyrin (FePP) catalytic species in nitrite oxidoreductase, three FePP-based biomimetic catalysts with different functional groups (─NH2, ─H, and ─COOCH3) are designed and prepared successfully. Theoretical calculations indicate that these functional groups can alter the electron density of Fe catalytic center, affecting their ability to adsorb and activate N2. The strong electron-donating ability of ─NH2 group can enhance the electron density of iron sites, which reveals a maximum NO3 yield of 728.55 µmol h−1 gFePP−1 and a high Faradaic efficiency of 10.6%. After that, the optimized FePP molecules can be encapsulated into ZIF-8, which remarkably promoted the N2─to─NO3 transformation with a NO3 production rate of 1767.74 µmol h−1 gFePP−1, achieving the highest catalytic effect among metalloporphyrin-based molecular catalysts under mild conditions. This work develops an available biomimetic approach to modulate the electron distribution of active metal sites and confine catalytic species into porous crystalline materials for constructing high-performance NOR electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信