纳米红外光谱研究了适体传感器的纳米相分离和分析物结合

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-19 DOI:10.1002/smll.202409369
Nafiseh Samiseresht, Gabriela Figueroa Miranda, Ankita Das, Kevin Graef, Dirk Mayer, Martin Rabe
{"title":"纳米红外光谱研究了适体传感器的纳米相分离和分析物结合","authors":"Nafiseh Samiseresht,&nbsp;Gabriela Figueroa Miranda,&nbsp;Ankita Das,&nbsp;Kevin Graef,&nbsp;Dirk Mayer,&nbsp;Martin Rabe","doi":"10.1002/smll.202409369","DOIUrl":null,"url":null,"abstract":"<p>Biosensors based on DNA aptamer receptors are increasingly used in diagnostic applications. To improve the sensitivity and specificity of aptasensors, parameters affecting the stability and binding efficiency of the receptor layer need to be identified and studied. For example, the blocking step, i.e., the addition of inert molecules to the receptor layer, can improve sensor performance, but can also cause phase separation into nanodomains of unknown composition and structure. Here, nano-IR spectroscopy is used together with complementary macroscopic spectroscopic methods to study the nano-structural variations during the fabrication of a recently developed SARS-CoV-2 aptasensor. The blocking step by polyethylene glycol (PEG) causes a significant thickening of the receptor layer and a phase separation into nanodomains consisting of an aptamer-rich and a slightly thicker PEG-rich phase. The unambiguous chemical identification of the nanodomains is achieved by analysis of nano-IR images. Furthermore, bound analyte (spike protein of SARS-CoV-2) is detected at the single molecule level. Detailed analysis of the local nano-IR spectra revealed structural properties such as the amorphous state of the PEG molecules within the nanodomains and a strong change in the secondary structure of the analyte. This study significantly advances the understanding of nanoscale chemical processes in the receptor layer of aptasensors.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 19","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202409369","citationCount":"0","resultStr":"{\"title\":\"Nano-Phase Separation and Analyte Binding in Aptasensors Investigated by Nano-IR Spectroscopy\",\"authors\":\"Nafiseh Samiseresht,&nbsp;Gabriela Figueroa Miranda,&nbsp;Ankita Das,&nbsp;Kevin Graef,&nbsp;Dirk Mayer,&nbsp;Martin Rabe\",\"doi\":\"10.1002/smll.202409369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biosensors based on DNA aptamer receptors are increasingly used in diagnostic applications. To improve the sensitivity and specificity of aptasensors, parameters affecting the stability and binding efficiency of the receptor layer need to be identified and studied. For example, the blocking step, i.e., the addition of inert molecules to the receptor layer, can improve sensor performance, but can also cause phase separation into nanodomains of unknown composition and structure. Here, nano-IR spectroscopy is used together with complementary macroscopic spectroscopic methods to study the nano-structural variations during the fabrication of a recently developed SARS-CoV-2 aptasensor. The blocking step by polyethylene glycol (PEG) causes a significant thickening of the receptor layer and a phase separation into nanodomains consisting of an aptamer-rich and a slightly thicker PEG-rich phase. The unambiguous chemical identification of the nanodomains is achieved by analysis of nano-IR images. Furthermore, bound analyte (spike protein of SARS-CoV-2) is detected at the single molecule level. Detailed analysis of the local nano-IR spectra revealed structural properties such as the amorphous state of the PEG molecules within the nanodomains and a strong change in the secondary structure of the analyte. This study significantly advances the understanding of nanoscale chemical processes in the receptor layer of aptasensors.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 19\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202409369\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409369\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409369","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于DNA适体受体的生物传感器越来越多地用于诊断应用。为了提高适体传感器的灵敏度和特异性,需要对影响受体层稳定性和结合效率的参数进行识别和研究。例如,阻断步骤,即在受体层中添加惰性分子,可以提高传感器的性能,但也可能导致相分离成成分和结构未知的纳米结构域。在这里,纳米红外光谱与互补的宏观光谱方法一起研究了最近开发的SARS - CoV - 2适体传感器在制造过程中的纳米结构变化。聚乙二醇(PEG)的阻断步骤导致受体层显着增厚,相分离成纳米结构域,由富含适体的相和略厚的富含PEG的相组成。纳米结构域的明确化学鉴定是通过分析纳米红外图像实现的。此外,结合物(SARS - CoV - 2的刺突蛋白)在单分子水平上被检测到。局部纳米红外光谱的详细分析揭示了结构特性,如纳米域内PEG分子的无定形状态和分析物二级结构的强烈变化。这项研究显著地促进了对适体传感器受体层纳米级化学过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nano-Phase Separation and Analyte Binding in Aptasensors Investigated by Nano-IR Spectroscopy

Nano-Phase Separation and Analyte Binding in Aptasensors Investigated by Nano-IR Spectroscopy

Biosensors based on DNA aptamer receptors are increasingly used in diagnostic applications. To improve the sensitivity and specificity of aptasensors, parameters affecting the stability and binding efficiency of the receptor layer need to be identified and studied. For example, the blocking step, i.e., the addition of inert molecules to the receptor layer, can improve sensor performance, but can also cause phase separation into nanodomains of unknown composition and structure. Here, nano-IR spectroscopy is used together with complementary macroscopic spectroscopic methods to study the nano-structural variations during the fabrication of a recently developed SARS-CoV-2 aptasensor. The blocking step by polyethylene glycol (PEG) causes a significant thickening of the receptor layer and a phase separation into nanodomains consisting of an aptamer-rich and a slightly thicker PEG-rich phase. The unambiguous chemical identification of the nanodomains is achieved by analysis of nano-IR images. Furthermore, bound analyte (spike protein of SARS-CoV-2) is detected at the single molecule level. Detailed analysis of the local nano-IR spectra revealed structural properties such as the amorphous state of the PEG molecules within the nanodomains and a strong change in the secondary structure of the analyte. This study significantly advances the understanding of nanoscale chemical processes in the receptor layer of aptasensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信