高曲率半经典重力的非线性运动方程

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Naman Kumar
{"title":"高曲率半经典重力的非线性运动方程","authors":"Naman Kumar","doi":"10.1016/j.physletb.2025.139264","DOIUrl":null,"url":null,"abstract":"<div><div>We derive the non-linear semiclassical equation of motion for a general diffeomorphism-invariant theory of gravity by leveraging the thermodynamic properties of closed causal horizons. Our work employs two complementary approaches. The first approach utilizes perturbative quantum gravity applied to a Rindler horizon. The result is then mapped to a stretched light cone, which can be understood as a union of Rindler planes. Here, we adopt the semiclassical physical process formulation, encapsulated by <span><math><mo>〈</mo><mi>Q</mi><mo>〉</mo><mo>=</mo><mi>T</mi><mi>δ</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span> where the heat-flux <span><math><mo>〈</mo><mi>Q</mi><mo>〉</mo></math></span> is related to the expectation value of stress-energy tensor <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span> is the generalized entropy. The second approach introduces a “higher curvature” Raychaudhuri equation, where the vanishing of the quantum expansion Θ pointwise as required by restricted quantum focusing establishes an equilibrium condition, <span><math><mi>δ</mi><msub><mrow><mi>S</mi></mrow><mrow><mtext>gen</mtext></mrow></msub><mo>=</mo><mn>0</mn></math></span>, at the null boundary of a causal diamond. While previous studies have only derived the linearized semiclassical equation of motion for higher curvature gravity, our work resolves this limitation by providing a fully non-linear formulation without invoking holography.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139264"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-linear equation of motion for higher curvature semiclassical gravity\",\"authors\":\"Naman Kumar\",\"doi\":\"10.1016/j.physletb.2025.139264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We derive the non-linear semiclassical equation of motion for a general diffeomorphism-invariant theory of gravity by leveraging the thermodynamic properties of closed causal horizons. Our work employs two complementary approaches. The first approach utilizes perturbative quantum gravity applied to a Rindler horizon. The result is then mapped to a stretched light cone, which can be understood as a union of Rindler planes. Here, we adopt the semiclassical physical process formulation, encapsulated by <span><math><mo>〈</mo><mi>Q</mi><mo>〉</mo><mo>=</mo><mi>T</mi><mi>δ</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span> where the heat-flux <span><math><mo>〈</mo><mi>Q</mi><mo>〉</mo></math></span> is related to the expectation value of stress-energy tensor <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span> is the generalized entropy. The second approach introduces a “higher curvature” Raychaudhuri equation, where the vanishing of the quantum expansion Θ pointwise as required by restricted quantum focusing establishes an equilibrium condition, <span><math><mi>δ</mi><msub><mrow><mi>S</mi></mrow><mrow><mtext>gen</mtext></mrow></msub><mo>=</mo><mn>0</mn></math></span>, at the null boundary of a causal diamond. While previous studies have only derived the linearized semiclassical equation of motion for higher curvature gravity, our work resolves this limitation by providing a fully non-linear formulation without invoking holography.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"861 \",\"pages\":\"Article 139264\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269325000243\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325000243","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用闭因果视界的热力学性质,导出了广义微分纯不变引力理论的非线性半经典运动方程。我们的工作采用了两种互补的方法。第一种方法利用微扰量子引力作用于伦德勒视界。然后将结果映射到一个拉伸的光锥,它可以被理解为伦德勒平面的并集。这里我们采用半经典物理过程公式,封装为< Q > =TδSgen,其中热流< Q >与应力-能量张量Tab的期望值有关,Sgen为广义熵。第二种方法引入了“更高曲率”Raychaudhuri方程,其中量子膨胀Θ点向的消失是受限量子聚焦所要求的,在因果金刚石的零边界处建立了一个平衡条件δSgen=0。虽然以前的研究只导出了高曲率重力的线性化半经典运动方程,但我们的工作通过提供一个完全非线性的公式而不调用全息法来解决这一限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear equation of motion for higher curvature semiclassical gravity
We derive the non-linear semiclassical equation of motion for a general diffeomorphism-invariant theory of gravity by leveraging the thermodynamic properties of closed causal horizons. Our work employs two complementary approaches. The first approach utilizes perturbative quantum gravity applied to a Rindler horizon. The result is then mapped to a stretched light cone, which can be understood as a union of Rindler planes. Here, we adopt the semiclassical physical process formulation, encapsulated by Q=TδSgen where the heat-flux Q is related to the expectation value of stress-energy tensor Tab and Sgen is the generalized entropy. The second approach introduces a “higher curvature” Raychaudhuri equation, where the vanishing of the quantum expansion Θ pointwise as required by restricted quantum focusing establishes an equilibrium condition, δSgen=0, at the null boundary of a causal diamond. While previous studies have only derived the linearized semiclassical equation of motion for higher curvature gravity, our work resolves this limitation by providing a fully non-linear formulation without invoking holography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信