Anna Mangini, Jon Bjarke Valbæk Mygind, Sara Garcia Ballesteros, Alessandro Pedico, Marco Armandi, Ib Chorkendorff, Federico Bella
{"title":"多种方法促进不同电解质中锂介导的氨电合成","authors":"Anna Mangini, Jon Bjarke Valbæk Mygind, Sara Garcia Ballesteros, Alessandro Pedico, Marco Armandi, Ib Chorkendorff, Federico Bella","doi":"10.1002/anie.202416027","DOIUrl":null,"url":null,"abstract":"<p>Ammonia electrosynthesis through the lithium-mediated approach has recently reached promising results towards high activity and selectivity in aprotic media, reaching high Faradaic efficiency (FE) values and NH<sub>3</sub> production rates. To fasten the comprehension and optimization of the complex lithium-mediated nitrogen reduction system, for the first time a multivariate approach is proposed as a powerful tool to reduce the number of experiments in comparison with the classical one-factor-at-a-time approach. Doehlert design and surface response methodology are employed to optimize the electrolyte composition for a batch autoclaved cell. The method is validated with the common LiBF<sub>4</sub> salt, and the correlations between the FE and the amount of lithium salt and ethanol as proton donor are elucidated, also discussing their impact on the solid electrolyte interphase (SEI) layer. Moreover, a new fluorinated salt is proposed (i.e., lithium difluoro(oxalate) borate (LiFOB)), taking inspiration from lithium batteries. This salt is chosen to tailor the SEI layer, with the aim of obtaining a bifunctional interfacial layer, both stable and permeable to N<sub>2</sub>, the latter being an essential characteristic for batch systems. The SEI layer composition is confirmed strategic and its tailoring with LiFOB boosts FE values.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 8","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202416027","citationCount":"0","resultStr":"{\"title\":\"Multivariate Approaches Boosting Lithium-Mediated Ammonia Electrosynthesis in Different Electrolytes\",\"authors\":\"Anna Mangini, Jon Bjarke Valbæk Mygind, Sara Garcia Ballesteros, Alessandro Pedico, Marco Armandi, Ib Chorkendorff, Federico Bella\",\"doi\":\"10.1002/anie.202416027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ammonia electrosynthesis through the lithium-mediated approach has recently reached promising results towards high activity and selectivity in aprotic media, reaching high Faradaic efficiency (FE) values and NH<sub>3</sub> production rates. To fasten the comprehension and optimization of the complex lithium-mediated nitrogen reduction system, for the first time a multivariate approach is proposed as a powerful tool to reduce the number of experiments in comparison with the classical one-factor-at-a-time approach. Doehlert design and surface response methodology are employed to optimize the electrolyte composition for a batch autoclaved cell. The method is validated with the common LiBF<sub>4</sub> salt, and the correlations between the FE and the amount of lithium salt and ethanol as proton donor are elucidated, also discussing their impact on the solid electrolyte interphase (SEI) layer. Moreover, a new fluorinated salt is proposed (i.e., lithium difluoro(oxalate) borate (LiFOB)), taking inspiration from lithium batteries. This salt is chosen to tailor the SEI layer, with the aim of obtaining a bifunctional interfacial layer, both stable and permeable to N<sub>2</sub>, the latter being an essential characteristic for batch systems. The SEI layer composition is confirmed strategic and its tailoring with LiFOB boosts FE values.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 8\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202416027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202416027\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202416027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multivariate Approaches Boosting Lithium-Mediated Ammonia Electrosynthesis in Different Electrolytes
Ammonia electrosynthesis through the lithium-mediated approach has recently reached promising results towards high activity and selectivity in aprotic media, reaching high Faradaic efficiency (FE) values and NH3 production rates. To fasten the comprehension and optimization of the complex lithium-mediated nitrogen reduction system, for the first time a multivariate approach is proposed as a powerful tool to reduce the number of experiments in comparison with the classical one-factor-at-a-time approach. Doehlert design and surface response methodology are employed to optimize the electrolyte composition for a batch autoclaved cell. The method is validated with the common LiBF4 salt, and the correlations between the FE and the amount of lithium salt and ethanol as proton donor are elucidated, also discussing their impact on the solid electrolyte interphase (SEI) layer. Moreover, a new fluorinated salt is proposed (i.e., lithium difluoro(oxalate) borate (LiFOB)), taking inspiration from lithium batteries. This salt is chosen to tailor the SEI layer, with the aim of obtaining a bifunctional interfacial layer, both stable and permeable to N2, the latter being an essential characteristic for batch systems. The SEI layer composition is confirmed strategic and its tailoring with LiFOB boosts FE values.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.