Thomas Vaissiere, Sheldon D. Michaelson, Thomas Creson, Jessie Goins, Daniel Fürth, Diana Balazsfi, Camilo Rojas, Randall Golovin, Konstantinos Meletis, Courtney A. Miller, Daniel O’Connor, Lorenzo Fontolan, Gavin Rumbaugh
{"title":"Syngap1通过调节皮质感觉运动动力学来促进认知功能","authors":"Thomas Vaissiere, Sheldon D. Michaelson, Thomas Creson, Jessie Goins, Daniel Fürth, Diana Balazsfi, Camilo Rojas, Randall Golovin, Konstantinos Meletis, Courtney A. Miller, Daniel O’Connor, Lorenzo Fontolan, Gavin Rumbaugh","doi":"10.1038/s41467-025-56125-0","DOIUrl":null,"url":null,"abstract":"<p>Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, <i>Syngap1</i>, in cortical excitatory neurons is required for the formation of somatomotor networks that promote SMI-mediated perception. Cortical <i>Syngap1</i> expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient <i>Syngap1</i> expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network that promotes attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous <i>Syngap1</i> expression in cortical excitatory neurons promotes cognitive abilities through the assembly of long-range circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between <i>Syngap1</i> expression and cognitive ability.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"9 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syngap1 promotes cognitive function through regulation of cortical sensorimotor dynamics\",\"authors\":\"Thomas Vaissiere, Sheldon D. Michaelson, Thomas Creson, Jessie Goins, Daniel Fürth, Diana Balazsfi, Camilo Rojas, Randall Golovin, Konstantinos Meletis, Courtney A. Miller, Daniel O’Connor, Lorenzo Fontolan, Gavin Rumbaugh\",\"doi\":\"10.1038/s41467-025-56125-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, <i>Syngap1</i>, in cortical excitatory neurons is required for the formation of somatomotor networks that promote SMI-mediated perception. Cortical <i>Syngap1</i> expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient <i>Syngap1</i> expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network that promotes attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous <i>Syngap1</i> expression in cortical excitatory neurons promotes cognitive abilities through the assembly of long-range circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between <i>Syngap1</i> expression and cognitive ability.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56125-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56125-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Syngap1 promotes cognitive function through regulation of cortical sensorimotor dynamics
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for the formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network that promotes attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through the assembly of long-range circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.