Johannes Friedlein, Julia Mergheim, Paul Steinmann
{"title":"基于梯度增强的应力状态相关韧性损伤模型——以接合为例","authors":"Johannes Friedlein, Julia Mergheim, Paul Steinmann","doi":"10.1016/j.jmps.2025.106026","DOIUrl":null,"url":null,"abstract":"<div><div>A coupled finite plasticity ductile damage and failure model is proposed for the finite element simulation of clinch joining, which incorporates stress-state dependency and regularisation by gradient-enhancement of the damage variable. Ductile damage is determined based on a failure indicator governed by a failure surface in stress space. The latter is exemplary chosen as a combination of the Hosford–Coulomb and Cockcroft–Latham–Oh failure criteria for the high and low stress triaxiality range, respectively, to cover the wide stress range encountered in forming. Damage is coupled to elasto-plasticity to capture the damage-induced degradation of the stiffness and flow stress. This affects the material behaviour up to failure, thereby realistically altering the stress state. Consequently, especially for highly ductile materials, where substantial necking and localisation precede material fracture, the failure prediction is enhanced. The resulting stress softening is regularised by gradient-enhancement to obtain mesh-objective results. The analysis of a modified punch test experiment emphasises how the damage-induced softening effect can strongly alter the actual stress state towards failure. Moreover, the impact of successful regularisation is shown, and the applicability of the damage and failure model to clinch joining is proven.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"196 ","pages":"Article 106026"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of stress-state-dependent ductile damage with gradient-enhancement exemplified for clinch joining\",\"authors\":\"Johannes Friedlein, Julia Mergheim, Paul Steinmann\",\"doi\":\"10.1016/j.jmps.2025.106026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A coupled finite plasticity ductile damage and failure model is proposed for the finite element simulation of clinch joining, which incorporates stress-state dependency and regularisation by gradient-enhancement of the damage variable. Ductile damage is determined based on a failure indicator governed by a failure surface in stress space. The latter is exemplary chosen as a combination of the Hosford–Coulomb and Cockcroft–Latham–Oh failure criteria for the high and low stress triaxiality range, respectively, to cover the wide stress range encountered in forming. Damage is coupled to elasto-plasticity to capture the damage-induced degradation of the stiffness and flow stress. This affects the material behaviour up to failure, thereby realistically altering the stress state. Consequently, especially for highly ductile materials, where substantial necking and localisation precede material fracture, the failure prediction is enhanced. The resulting stress softening is regularised by gradient-enhancement to obtain mesh-objective results. The analysis of a modified punch test experiment emphasises how the damage-induced softening effect can strongly alter the actual stress state towards failure. Moreover, the impact of successful regularisation is shown, and the applicability of the damage and failure model to clinch joining is proven.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"196 \",\"pages\":\"Article 106026\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002250962500002X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962500002X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Modelling of stress-state-dependent ductile damage with gradient-enhancement exemplified for clinch joining
A coupled finite plasticity ductile damage and failure model is proposed for the finite element simulation of clinch joining, which incorporates stress-state dependency and regularisation by gradient-enhancement of the damage variable. Ductile damage is determined based on a failure indicator governed by a failure surface in stress space. The latter is exemplary chosen as a combination of the Hosford–Coulomb and Cockcroft–Latham–Oh failure criteria for the high and low stress triaxiality range, respectively, to cover the wide stress range encountered in forming. Damage is coupled to elasto-plasticity to capture the damage-induced degradation of the stiffness and flow stress. This affects the material behaviour up to failure, thereby realistically altering the stress state. Consequently, especially for highly ductile materials, where substantial necking and localisation precede material fracture, the failure prediction is enhanced. The resulting stress softening is regularised by gradient-enhancement to obtain mesh-objective results. The analysis of a modified punch test experiment emphasises how the damage-induced softening effect can strongly alter the actual stress state towards failure. Moreover, the impact of successful regularisation is shown, and the applicability of the damage and failure model to clinch joining is proven.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.