Clifford分析中Cauchy积分算子的H-B定理

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Yufeng Wang, Zhongxiang Zhang
{"title":"Clifford分析中Cauchy积分算子的H-B定理","authors":"Yufeng Wang,&nbsp;Zhongxiang Zhang","doi":"10.1007/s00006-025-01371-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we verify the boundedness of the Cauchy type integral operators under the generalized Hölder norm in Clifford analysis, which are called H-B theorems of the Cauchy integral operators in Clifford analysis. We first demonstrate the generalized 2P theorems and the generalized Muskhelishvili theorem in Clifford analysis by Du’s method derived from Du (J Math (PRC) 2(2):115–12, 1982) and Lu (Boundary value problems of analytic functions. World Scientific, Singapore, 1993), which greatly refines the coefficients estimate of inequality in Du et al. (Acta Math Sci 29B(1):210–224, 2009) and Zhang (Complex Var Elliptic Equ 52(6):455–473, 2007). Then, we obtain the H-B theorems which extend and improve the corresponding results in Du et al. (2009) and Wang and Du (Z Anal Anwend, 2024).</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H-B Theorems of Cauchy Integral Operators in Clifford Analysis\",\"authors\":\"Yufeng Wang,&nbsp;Zhongxiang Zhang\",\"doi\":\"10.1007/s00006-025-01371-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we verify the boundedness of the Cauchy type integral operators under the generalized Hölder norm in Clifford analysis, which are called H-B theorems of the Cauchy integral operators in Clifford analysis. We first demonstrate the generalized 2P theorems and the generalized Muskhelishvili theorem in Clifford analysis by Du’s method derived from Du (J Math (PRC) 2(2):115–12, 1982) and Lu (Boundary value problems of analytic functions. World Scientific, Singapore, 1993), which greatly refines the coefficients estimate of inequality in Du et al. (Acta Math Sci 29B(1):210–224, 2009) and Zhang (Complex Var Elliptic Equ 52(6):455–473, 2007). Then, we obtain the H-B theorems which extend and improve the corresponding results in Du et al. (2009) and Wang and Du (Z Anal Anwend, 2024).</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01371-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01371-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了Clifford分析中广义Hölder范数下柯西型积分算子的有界性,称为Clifford分析中柯西积分算子的H-B定理。本文首先利用Du (J Math (PRC) 2(2):115 - 12,1982)和Lu(解析函数的边值问题)导出的Du方法,证明了Clifford分析中的广义2P定理和广义Muskhelishvili定理。世界科学,新加坡,1993),大大改进了Du等人(数学学报29B(1): 210-224, 2009)和Zhang(复Var椭圆方程52(6):455-473,2007)的不等式系数估计。然后,我们得到了H-B定理,该定理扩展和改进了Du et al.(2009)和Wang and Du (Z Anal Anwend, 2024)的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H-B Theorems of Cauchy Integral Operators in Clifford Analysis

In this article, we verify the boundedness of the Cauchy type integral operators under the generalized Hölder norm in Clifford analysis, which are called H-B theorems of the Cauchy integral operators in Clifford analysis. We first demonstrate the generalized 2P theorems and the generalized Muskhelishvili theorem in Clifford analysis by Du’s method derived from Du (J Math (PRC) 2(2):115–12, 1982) and Lu (Boundary value problems of analytic functions. World Scientific, Singapore, 1993), which greatly refines the coefficients estimate of inequality in Du et al. (Acta Math Sci 29B(1):210–224, 2009) and Zhang (Complex Var Elliptic Equ 52(6):455–473, 2007). Then, we obtain the H-B theorems which extend and improve the corresponding results in Du et al. (2009) and Wang and Du (Z Anal Anwend, 2024).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信