Wei Zhang , Huajing Zeng , Siyu Xie , Cheng Yu , Meina Zhang , Qiuyan Chen , Huiyue Dong , Hui Zhang , Hao Lin , Nengjing Zheng , Lin Zhu , Jun Lu
{"title":"nf -06409577激活自噬可减轻中暑引起的器官损伤","authors":"Wei Zhang , Huajing Zeng , Siyu Xie , Cheng Yu , Meina Zhang , Qiuyan Chen , Huiyue Dong , Hui Zhang , Hao Lin , Nengjing Zheng , Lin Zhu , Jun Lu","doi":"10.1016/j.envint.2025.109285","DOIUrl":null,"url":null,"abstract":"<div><div>Heat waves are a significant environmental issue threatening global human health. Extreme temperatures can lead to various heat-related illnesses, with heatstroke being among the most severe. Currently, there are no effective treatments to mitigate the multi-organ damage caused by heatstroke. We found that heat stress activated autophagy. Knockdown of the autophagy-related gene 7 (ATG7) or knockout of the autophagy initiation regulatory genes UNC-51-like autophagy activating kinase 1/2 (ULK1/ULK2) increased cell death. PF-06409577, an allosteric activator of AMP-activated protein kinase β (AMPKβ), reduced heat stress-induced cell death by promoting autophagy. Inhibition of ATG7 or ULK1 weakened PF-06409577′s protective effect on cells. Treatment of heatstroke mouse models with PF-06409577 suppressed high temperature-induced damage to multiple organs, including the liver, kidneys, lungs, and small intestine. PF-06409577 protected liver and kidney functions, lowered the expression of kidney injury markers neutrophil gelatinase associated lipocalin (Ngal), secreted phosphoprotein 1 (Spp1), and clusterin (Clu), and reduced levels of the inflammatory factor IL-6. Additionally, it decreased heat stress-induced macrophage infiltration and IL-6 production in the liver. The results indicate that activation of autophagy serves a protective function during heat stress, and the AMPK activator PF-06409577 exhibits potential in mitigating heatstroke-induced multi-organ damage through its ability to promote autophagy.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"196 ","pages":"Article 109285"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of autophagy with PF-06409577 alleviates heatstroke-induced organ injury\",\"authors\":\"Wei Zhang , Huajing Zeng , Siyu Xie , Cheng Yu , Meina Zhang , Qiuyan Chen , Huiyue Dong , Hui Zhang , Hao Lin , Nengjing Zheng , Lin Zhu , Jun Lu\",\"doi\":\"10.1016/j.envint.2025.109285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heat waves are a significant environmental issue threatening global human health. Extreme temperatures can lead to various heat-related illnesses, with heatstroke being among the most severe. Currently, there are no effective treatments to mitigate the multi-organ damage caused by heatstroke. We found that heat stress activated autophagy. Knockdown of the autophagy-related gene 7 (ATG7) or knockout of the autophagy initiation regulatory genes UNC-51-like autophagy activating kinase 1/2 (ULK1/ULK2) increased cell death. PF-06409577, an allosteric activator of AMP-activated protein kinase β (AMPKβ), reduced heat stress-induced cell death by promoting autophagy. Inhibition of ATG7 or ULK1 weakened PF-06409577′s protective effect on cells. Treatment of heatstroke mouse models with PF-06409577 suppressed high temperature-induced damage to multiple organs, including the liver, kidneys, lungs, and small intestine. PF-06409577 protected liver and kidney functions, lowered the expression of kidney injury markers neutrophil gelatinase associated lipocalin (Ngal), secreted phosphoprotein 1 (Spp1), and clusterin (Clu), and reduced levels of the inflammatory factor IL-6. Additionally, it decreased heat stress-induced macrophage infiltration and IL-6 production in the liver. The results indicate that activation of autophagy serves a protective function during heat stress, and the AMPK activator PF-06409577 exhibits potential in mitigating heatstroke-induced multi-organ damage through its ability to promote autophagy.</div></div>\",\"PeriodicalId\":308,\"journal\":{\"name\":\"Environment International\",\"volume\":\"196 \",\"pages\":\"Article 109285\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment International\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160412025000364\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412025000364","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Activation of autophagy with PF-06409577 alleviates heatstroke-induced organ injury
Heat waves are a significant environmental issue threatening global human health. Extreme temperatures can lead to various heat-related illnesses, with heatstroke being among the most severe. Currently, there are no effective treatments to mitigate the multi-organ damage caused by heatstroke. We found that heat stress activated autophagy. Knockdown of the autophagy-related gene 7 (ATG7) or knockout of the autophagy initiation regulatory genes UNC-51-like autophagy activating kinase 1/2 (ULK1/ULK2) increased cell death. PF-06409577, an allosteric activator of AMP-activated protein kinase β (AMPKβ), reduced heat stress-induced cell death by promoting autophagy. Inhibition of ATG7 or ULK1 weakened PF-06409577′s protective effect on cells. Treatment of heatstroke mouse models with PF-06409577 suppressed high temperature-induced damage to multiple organs, including the liver, kidneys, lungs, and small intestine. PF-06409577 protected liver and kidney functions, lowered the expression of kidney injury markers neutrophil gelatinase associated lipocalin (Ngal), secreted phosphoprotein 1 (Spp1), and clusterin (Clu), and reduced levels of the inflammatory factor IL-6. Additionally, it decreased heat stress-induced macrophage infiltration and IL-6 production in the liver. The results indicate that activation of autophagy serves a protective function during heat stress, and the AMPK activator PF-06409577 exhibits potential in mitigating heatstroke-induced multi-organ damage through its ability to promote autophagy.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.