用于整体水分离电催化的 5 纳米以下均匀结晶镍基异质结

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuanyuan Wang, Rui Yin, Lei Yuan, Xingmei Guo, Xiangjun Zheng, Qianqian Fan, Zhongyao Duan, Yuanjun Liu, Junhao Zhang, Shenglin Xiong
{"title":"用于整体水分离电催化的 5 纳米以下均匀结晶镍基异质结","authors":"Yuanyuan Wang, Rui Yin, Lei Yuan, Xingmei Guo, Xiangjun Zheng, Qianqian Fan, Zhongyao Duan, Yuanjun Liu, Junhao Zhang, Shenglin Xiong","doi":"10.1021/acsenergylett.4c03097","DOIUrl":null,"url":null,"abstract":"Exploring a general method for constructing uniform heterostructures with sub-5 nm crystallites and dense interfaces is crucial yet challenging for advancing water electrocatalysis. Herein, a bottom-up cocrystallization strategy, involving in situ transformation of amorphous Ni–P through gas–solid reactions, is proposed to synthesize a series of nickel-based heterojunctions on carbon cloth (CC). Thereinto, interface-wealthy NiS<sub>2</sub>-Ni<sub>2</sub>P/CC with densely packed 3–4 nm crystallites demonstrates superb catalytic performance for both hydrogen and oxygen evolution. The electrolyzer merely requires cell voltages of 1.79 and 1.89 V to propel overall water splitting currents of 200 and 400 mA cm<sup>–2</sup>, respectively, outperforming the vast majority of reported nickel-based heterojunctions. Theoretical calculations reveal that charge redistribution and electronic structure modulation optimize the hydrogen and oxygen evolution pathways at the NiS<sub>2</sub> and Ni<sub>2</sub>P sides of the interfaces, respectively. Moreover, uniform hybridization with densely distributed heterointerfaces offers abundant active sites for electrocatalysis, pioneering an extendable approach for constructing advanced heterojunction catalysts for green hydrogen production.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"27 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform Sub-5 nm Crystalline Nickel-Based Heterojunctions for Overall Water Splitting Electrocatalysis\",\"authors\":\"Yuanyuan Wang, Rui Yin, Lei Yuan, Xingmei Guo, Xiangjun Zheng, Qianqian Fan, Zhongyao Duan, Yuanjun Liu, Junhao Zhang, Shenglin Xiong\",\"doi\":\"10.1021/acsenergylett.4c03097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring a general method for constructing uniform heterostructures with sub-5 nm crystallites and dense interfaces is crucial yet challenging for advancing water electrocatalysis. Herein, a bottom-up cocrystallization strategy, involving in situ transformation of amorphous Ni–P through gas–solid reactions, is proposed to synthesize a series of nickel-based heterojunctions on carbon cloth (CC). Thereinto, interface-wealthy NiS<sub>2</sub>-Ni<sub>2</sub>P/CC with densely packed 3–4 nm crystallites demonstrates superb catalytic performance for both hydrogen and oxygen evolution. The electrolyzer merely requires cell voltages of 1.79 and 1.89 V to propel overall water splitting currents of 200 and 400 mA cm<sup>–2</sup>, respectively, outperforming the vast majority of reported nickel-based heterojunctions. Theoretical calculations reveal that charge redistribution and electronic structure modulation optimize the hydrogen and oxygen evolution pathways at the NiS<sub>2</sub> and Ni<sub>2</sub>P sides of the interfaces, respectively. Moreover, uniform hybridization with densely distributed heterointerfaces offers abundant active sites for electrocatalysis, pioneering an extendable approach for constructing advanced heterojunction catalysts for green hydrogen production.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c03097\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03097","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

探索一种具有亚5nm晶体和致密界面的均匀异质结构的通用方法对于推进水电催化至关重要,但也是具有挑战性的。本文提出了一种自下而上的共结晶策略,即通过气固反应原位转变非晶Ni-P,在碳布(CC)上合成一系列镍基异质结。其中,界面丰富的NiS2-Ni2P/CC具有致密排列的3-4 nm晶体,具有优异的析氢和析氧催化性能。电解槽只需要1.79和1.89 V的电池电压,就可以分别推动200和400 mA cm-2的总水分解电流,优于绝大多数报道的镍基异质结。理论计算表明,电荷重分配和电子结构调制分别优化了界面NiS2侧和Ni2P侧的析氢和析氧路径。此外,具有密集分布异质界面的均匀杂化为电催化提供了丰富的活性位点,为构建先进的绿色制氢异质结催化剂开辟了可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uniform Sub-5 nm Crystalline Nickel-Based Heterojunctions for Overall Water Splitting Electrocatalysis

Uniform Sub-5 nm Crystalline Nickel-Based Heterojunctions for Overall Water Splitting Electrocatalysis
Exploring a general method for constructing uniform heterostructures with sub-5 nm crystallites and dense interfaces is crucial yet challenging for advancing water electrocatalysis. Herein, a bottom-up cocrystallization strategy, involving in situ transformation of amorphous Ni–P through gas–solid reactions, is proposed to synthesize a series of nickel-based heterojunctions on carbon cloth (CC). Thereinto, interface-wealthy NiS2-Ni2P/CC with densely packed 3–4 nm crystallites demonstrates superb catalytic performance for both hydrogen and oxygen evolution. The electrolyzer merely requires cell voltages of 1.79 and 1.89 V to propel overall water splitting currents of 200 and 400 mA cm–2, respectively, outperforming the vast majority of reported nickel-based heterojunctions. Theoretical calculations reveal that charge redistribution and electronic structure modulation optimize the hydrogen and oxygen evolution pathways at the NiS2 and Ni2P sides of the interfaces, respectively. Moreover, uniform hybridization with densely distributed heterointerfaces offers abundant active sites for electrocatalysis, pioneering an extendable approach for constructing advanced heterojunction catalysts for green hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信