Ziyan Wang , Wei Zhang , Ziyan Liu , Danyang Huang , Huiwen Kang , Jingyu Wang , Guangyu Jiang , Ai Gao
{"title":"肠道菌群失调通过炎症参与十溴联苯醚诱导的骨稳态紊乱","authors":"Ziyan Wang , Wei Zhang , Ziyan Liu , Danyang Huang , Huiwen Kang , Jingyu Wang , Guangyu Jiang , Ai Gao","doi":"10.1016/j.envpol.2025.125710","DOIUrl":null,"url":null,"abstract":"<div><div>BDE-209 has a causal relationship with adverse health outcomes. However, research on its effect on bone homeostasis is relatively lacking. This study examined the relationship between BDE-209 exposure and bone health, as well as the underlying mechanisms, using both <em>in vitro</em> and <em>in vivo</em> models. In animal studies, female SD rats were administered BDE-209 for 60 days. Bone mineral density, bone microstructure, gut microbiota, and inflammaging markers were measured. Furtherly, THP-1 cell-derived macrophages were treated with a culture medium containing population-relevant dose of BDE-209 or sodium butyrate. The expression of M1 macrophage markers, osteoclast markers, and inflammatory cytokines was measured. Then macrophages were induced by osteoclast conditioned medium to evaluate the effect of BDE-209 on their differentiation into osteoclasts. Results showed reduced humeral bone density, enhanced osteoclast activity, upregulation of IL-1β, TNF-α, IL-6, and activation of PGC-1α/NAD<sup>+</sup>/cGAS-STING in the exposed group. 16s sequencing revealed that BDE-209 disrupts the abundance of the gut microbiota, notably a reduction in <em>Lachnospiraceae</em>. <em>In vitro,</em> BDE-209 can stimulate macrophages to differentiate more osteoclasts and activate the cGAS-STING pathway, while sodium butyrate can inhibit these effects. This study reveals that gut microbiota dysbiosis is involved in BDE-209-induced bone homeostasis disorder through inflammatory aging and sodium butyrate can mitigate this effect. Overall, this study provides research data for the precaution and treatment of osteoporosis associated with BDE-209 exposure.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"368 ","pages":"Article 125710"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut microbiota dysbiosis involved in decabromodiphenyl ether-induced bone homeostasis disorder through inflammaging\",\"authors\":\"Ziyan Wang , Wei Zhang , Ziyan Liu , Danyang Huang , Huiwen Kang , Jingyu Wang , Guangyu Jiang , Ai Gao\",\"doi\":\"10.1016/j.envpol.2025.125710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>BDE-209 has a causal relationship with adverse health outcomes. However, research on its effect on bone homeostasis is relatively lacking. This study examined the relationship between BDE-209 exposure and bone health, as well as the underlying mechanisms, using both <em>in vitro</em> and <em>in vivo</em> models. In animal studies, female SD rats were administered BDE-209 for 60 days. Bone mineral density, bone microstructure, gut microbiota, and inflammaging markers were measured. Furtherly, THP-1 cell-derived macrophages were treated with a culture medium containing population-relevant dose of BDE-209 or sodium butyrate. The expression of M1 macrophage markers, osteoclast markers, and inflammatory cytokines was measured. Then macrophages were induced by osteoclast conditioned medium to evaluate the effect of BDE-209 on their differentiation into osteoclasts. Results showed reduced humeral bone density, enhanced osteoclast activity, upregulation of IL-1β, TNF-α, IL-6, and activation of PGC-1α/NAD<sup>+</sup>/cGAS-STING in the exposed group. 16s sequencing revealed that BDE-209 disrupts the abundance of the gut microbiota, notably a reduction in <em>Lachnospiraceae</em>. <em>In vitro,</em> BDE-209 can stimulate macrophages to differentiate more osteoclasts and activate the cGAS-STING pathway, while sodium butyrate can inhibit these effects. This study reveals that gut microbiota dysbiosis is involved in BDE-209-induced bone homeostasis disorder through inflammatory aging and sodium butyrate can mitigate this effect. Overall, this study provides research data for the precaution and treatment of osteoporosis associated with BDE-209 exposure.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"368 \",\"pages\":\"Article 125710\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125000831\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125000831","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Gut microbiota dysbiosis involved in decabromodiphenyl ether-induced bone homeostasis disorder through inflammaging
BDE-209 has a causal relationship with adverse health outcomes. However, research on its effect on bone homeostasis is relatively lacking. This study examined the relationship between BDE-209 exposure and bone health, as well as the underlying mechanisms, using both in vitro and in vivo models. In animal studies, female SD rats were administered BDE-209 for 60 days. Bone mineral density, bone microstructure, gut microbiota, and inflammaging markers were measured. Furtherly, THP-1 cell-derived macrophages were treated with a culture medium containing population-relevant dose of BDE-209 or sodium butyrate. The expression of M1 macrophage markers, osteoclast markers, and inflammatory cytokines was measured. Then macrophages were induced by osteoclast conditioned medium to evaluate the effect of BDE-209 on their differentiation into osteoclasts. Results showed reduced humeral bone density, enhanced osteoclast activity, upregulation of IL-1β, TNF-α, IL-6, and activation of PGC-1α/NAD+/cGAS-STING in the exposed group. 16s sequencing revealed that BDE-209 disrupts the abundance of the gut microbiota, notably a reduction in Lachnospiraceae. In vitro, BDE-209 can stimulate macrophages to differentiate more osteoclasts and activate the cGAS-STING pathway, while sodium butyrate can inhibit these effects. This study reveals that gut microbiota dysbiosis is involved in BDE-209-induced bone homeostasis disorder through inflammatory aging and sodium butyrate can mitigate this effect. Overall, this study provides research data for the precaution and treatment of osteoporosis associated with BDE-209 exposure.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.