从宏观、中观到微观:选择性激光熔化Mg-RE合金的致密化行为、变形响应和显微组织演变

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Cheng Chang, Guangrui Yao, Sophie C. Cox, Xiaofeng Zhang, Liyuan Sheng, Min Liu, Weili Cheng, Yang Lu, Xingchen Yan
{"title":"从宏观、中观到微观:选择性激光熔化Mg-RE合金的致密化行为、变形响应和显微组织演变","authors":"Cheng Chang, Guangrui Yao, Sophie C. Cox, Xiaofeng Zhang, Liyuan Sheng, Min Liu, Weili Cheng, Yang Lu, Xingchen Yan","doi":"10.1016/j.jma.2024.12.018","DOIUrl":null,"url":null,"abstract":"To clarify the densification behavior, deformation response and strengthening mechanisms of selective laser melted (SLM) Mg-RE alloys, this study systematically investigates a representative WE43 alloy via advanced material characterization techniques. A suitable laser output mode fell into the transition mode, allowing for the fabrication of nearly full-density samples (porosity = 0.85 ± 0.021 %) with favorable mechanical properties (yield strength=351 MPa, ultimate tensile strength = 417 MPa, the elongation at break = 6.5 % and microhardness = 137.9 ± 6.15 HV<sub>0.1</sub>) using optimal processing parameters (<em>P</em> = 80 W, <em>v</em> = 250 mm/s and <em>d</em> = 50 µm). Viscoplastic self-consistent analysis and transmission electron microscopy observations reveal that the plastic deformation response of the SLM Mg-RE alloys is primarily driven by basal &lt;<em>a</em>&gt; and prismatic &lt;<em>a</em>&gt; slips. Starting from a random texture before deformation (maximum multiple of ultimate density, Max. MUD = 3.95), plastic stretching led the grains to align with the Z-axis, finally resulting in a {0001}&lt;<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;10&lt;/mn&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;mo is=\"true\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 2072 947.9\" width=\"4.812ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1001,0)\"><g is=\"true\" transform=\"translate(35,0)\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(0,198)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1571,0)\"><use xlink:href=\"#MJMAIN-30\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mn is=\"true\">10</mn><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">0</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mn is=\"true\">10</mn><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">0</mn></mrow></math></script></span>&gt; texture orientation after fracture (Max. MUD = 8.755). Main phases of the SLM state are mainly composed of α-Mg, Mg<sub>24</sub>Y<sub>5</sub> and β’-Mg<sub>41</sub>Nd<sub>5</sub>, with an average grain size of only 4.27 µm (about a quarter of that in the extruded state), resulting in a favorable strength-toughness ratio. Except for the nano-β’ phase and semi-coherent Mg<sub>24</sub>Y<sub>5</sub> phase (mismatch = 16.12 %) around the grain boundaries, a small amount of nano-ZrO<sub>2</sub> and Y<sub>2</sub>O<sub>3</sub> particles also play a role in dispersion strengthening. The high mechanical properties of the SLM state are chiefly attributed to precipitation hardening (44.41 %), solid solution strengthening (34.06 %) and grain boundary strengthening (21.53 %), with precipitation hardening being predominantly driven by dislocation strengthening (67.77 %). High-performance SLM Mg-RE alloy components were manufactured and showcased at TCT Asia 2024, receiving favorable attention. This work underscores the significant application potential of SLM Mg-RE alloys and establishes a strong foundation for advancing their use in the biomedical fields.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"8 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy\",\"authors\":\"Cheng Chang, Guangrui Yao, Sophie C. Cox, Xiaofeng Zhang, Liyuan Sheng, Min Liu, Weili Cheng, Yang Lu, Xingchen Yan\",\"doi\":\"10.1016/j.jma.2024.12.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To clarify the densification behavior, deformation response and strengthening mechanisms of selective laser melted (SLM) Mg-RE alloys, this study systematically investigates a representative WE43 alloy via advanced material characterization techniques. A suitable laser output mode fell into the transition mode, allowing for the fabrication of nearly full-density samples (porosity = 0.85 ± 0.021 %) with favorable mechanical properties (yield strength=351 MPa, ultimate tensile strength = 417 MPa, the elongation at break = 6.5 % and microhardness = 137.9 ± 6.15 HV<sub>0.1</sub>) using optimal processing parameters (<em>P</em> = 80 W, <em>v</em> = 250 mm/s and <em>d</em> = 50 µm). Viscoplastic self-consistent analysis and transmission electron microscopy observations reveal that the plastic deformation response of the SLM Mg-RE alloys is primarily driven by basal &lt;<em>a</em>&gt; and prismatic &lt;<em>a</em>&gt; slips. Starting from a random texture before deformation (maximum multiple of ultimate density, Max. MUD = 3.95), plastic stretching led the grains to align with the Z-axis, finally resulting in a {0001}&lt;<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;10&lt;/mn&gt;&lt;mover accent=\\\"true\\\" is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;1&lt;/mn&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;mn is=\\\"true\\\"&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.202ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -846.5 2072 947.9\\\" width=\\\"4.812ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1001,0)\\\"><g is=\\\"true\\\" transform=\\\"translate(35,0)\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(0,198)\\\"><use x=\\\"-70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use><use x=\\\"70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1571,0)\\\"><use xlink:href=\\\"#MJMAIN-30\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">10</mn><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">¯</mo></mover><mn is=\\\"true\\\">0</mn></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mn is=\\\"true\\\">10</mn><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">¯</mo></mover><mn is=\\\"true\\\">0</mn></mrow></math></script></span>&gt; texture orientation after fracture (Max. MUD = 8.755). Main phases of the SLM state are mainly composed of α-Mg, Mg<sub>24</sub>Y<sub>5</sub> and β’-Mg<sub>41</sub>Nd<sub>5</sub>, with an average grain size of only 4.27 µm (about a quarter of that in the extruded state), resulting in a favorable strength-toughness ratio. Except for the nano-β’ phase and semi-coherent Mg<sub>24</sub>Y<sub>5</sub> phase (mismatch = 16.12 %) around the grain boundaries, a small amount of nano-ZrO<sub>2</sub> and Y<sub>2</sub>O<sub>3</sub> particles also play a role in dispersion strengthening. The high mechanical properties of the SLM state are chiefly attributed to precipitation hardening (44.41 %), solid solution strengthening (34.06 %) and grain boundary strengthening (21.53 %), with precipitation hardening being predominantly driven by dislocation strengthening (67.77 %). High-performance SLM Mg-RE alloy components were manufactured and showcased at TCT Asia 2024, receiving favorable attention. This work underscores the significant application potential of SLM Mg-RE alloys and establishes a strong foundation for advancing their use in the biomedical fields.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2024.12.018\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.018","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了阐明选择性激光熔化(SLM) Mg-RE合金的致密化行为、变形响应和强化机制,本研究采用先进的材料表征技术系统地研究了一种具有代表性的WE43合金。合适的激光输出模式为过渡模式,在最佳工艺参数(P = 80 W, v = 250 mm/s, d = 50µm)下,可以制备出具有良好力学性能(屈服强度=351 MPa,极限抗拉强度= 417 MPa,断裂伸长率= 6.5%,显微硬度= 137.9±6.15 HV0.1)的近全密度样品(孔隙率= 0.85±0.021%)。粘塑性自一致分析和透射电镜观察表明,SLM Mg-RE合金的塑性变形响应主要由基底<;a>;棱镜<; >;滑倒。从变形前的随机纹理开始(最终密度的最大倍数,Max。MUD = 3.95),塑性拉伸使晶粒与z轴对齐,最终得到{0001}<;101¯0101¯0>;断裂后的织构取向(Max。泥浆= 8.755)。SLM态的主要相主要由α-Mg、Mg24Y5和β′-Mg41Nd5组成,平均晶粒尺寸仅为4.27µm(约为挤压态的1 / 4),具有良好的强韧性比。除了晶界附近的纳米β′相和半相干Mg24Y5相(错配率为16.12%)外,少量的纳米zro2和Y2O3颗粒也起到了弥散强化的作用。SLM态的高力学性能主要由析出硬化(44.41%)、固溶强化(34.06%)和晶界强化(21.53%)引起,其中析出硬化主要由位错强化(67.77%)驱动。高性能SLM Mg-RE合金部件在TCT Asia 2024上进行了展示,受到了广泛关注。这项工作强调了SLM Mg-RE合金的巨大应用潜力,并为推进其在生物医学领域的应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy

From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy
To clarify the densification behavior, deformation response and strengthening mechanisms of selective laser melted (SLM) Mg-RE alloys, this study systematically investigates a representative WE43 alloy via advanced material characterization techniques. A suitable laser output mode fell into the transition mode, allowing for the fabrication of nearly full-density samples (porosity = 0.85 ± 0.021 %) with favorable mechanical properties (yield strength=351 MPa, ultimate tensile strength = 417 MPa, the elongation at break = 6.5 % and microhardness = 137.9 ± 6.15 HV0.1) using optimal processing parameters (P = 80 W, v = 250 mm/s and d = 50 µm). Viscoplastic self-consistent analysis and transmission electron microscopy observations reveal that the plastic deformation response of the SLM Mg-RE alloys is primarily driven by basal <a> and prismatic <a> slips. Starting from a random texture before deformation (maximum multiple of ultimate density, Max. MUD = 3.95), plastic stretching led the grains to align with the Z-axis, finally resulting in a {0001}<101¯0> texture orientation after fracture (Max. MUD = 8.755). Main phases of the SLM state are mainly composed of α-Mg, Mg24Y5 and β’-Mg41Nd5, with an average grain size of only 4.27 µm (about a quarter of that in the extruded state), resulting in a favorable strength-toughness ratio. Except for the nano-β’ phase and semi-coherent Mg24Y5 phase (mismatch = 16.12 %) around the grain boundaries, a small amount of nano-ZrO2 and Y2O3 particles also play a role in dispersion strengthening. The high mechanical properties of the SLM state are chiefly attributed to precipitation hardening (44.41 %), solid solution strengthening (34.06 %) and grain boundary strengthening (21.53 %), with precipitation hardening being predominantly driven by dislocation strengthening (67.77 %). High-performance SLM Mg-RE alloy components were manufactured and showcased at TCT Asia 2024, receiving favorable attention. This work underscores the significant application potential of SLM Mg-RE alloys and establishes a strong foundation for advancing their use in the biomedical fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信