基于时空多任务学习的城市轨道交通节假日短期客流量预测

IF 3.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Hao Qiu, Jinlei Zhang, Lixing Yang, Kuo Han, Xiaobao Yang, Ziyou Gao
{"title":"基于时空多任务学习的城市轨道交通节假日短期客流量预测","authors":"Hao Qiu, Jinlei Zhang, Lixing Yang, Kuo Han, Xiaobao Yang, Ziyou Gao","doi":"10.1007/s11116-025-10583-z","DOIUrl":null,"url":null,"abstract":"<p>The rapid growth of passengers has led to overcrowding in urban rail transit (URT) systems, especially during holidays, posing significant challenges to the safe management and operation of URT systems. Accurate and real-time short-term passenger inflow and outflow prediction on holidays is essential for operation management and resource allocation to alleviate such overcrowding. However, short-term passenger inflow and outflow prediction on holidays is a challenging task influenced by various factors, including temporal dependencies, spatial dependencies, the temporal evolution of spatial dependencies, the interaction between inflow and outflow, and the limited holiday samples. To address these challenges, we propose a Spatial–Temporal Multi-Task Learning (STMTL) for short-term passenger inflow and outflow prediction on holidays in URT systems. STMTL comprises three parts: (1) Multi-Graph Channel Attention Network (MGCA) extracts both static and dynamic spatial dependencies from inter-station interaction graphs and then adaptively integrates multi-graph features. (2) Time Encoding-Gated Recurrent Unit (TE-GRU), utilizes time encoding gates to capture long-term periodic variations and unique fluctuations caused by holidays. (3) Cross-attention block (CAB) captures complex interactions during holidays and facilitates the sharing of spatiotemporal features between passenger inflow and outflow. The effectiveness and robustness of STMTL are validated on two real-world datasets from the Nanning URT system in China during the New Year’s Day period. Experimental results demonstrate that STMTL consistently outperforms several classic and state-of-the-art models. STMTL achieves a 3.87% and 3.39% average improvement over the best-performing baseline models at 15-min and 30-min granularities, highlighting its potential for practical applications in URT systems during holidays.</p>","PeriodicalId":49419,"journal":{"name":"Transportation","volume":"2 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial–temporal multi-task learning for short-term passenger inflow and outflow prediction on holidays in urban rail transit systems\",\"authors\":\"Hao Qiu, Jinlei Zhang, Lixing Yang, Kuo Han, Xiaobao Yang, Ziyou Gao\",\"doi\":\"10.1007/s11116-025-10583-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid growth of passengers has led to overcrowding in urban rail transit (URT) systems, especially during holidays, posing significant challenges to the safe management and operation of URT systems. Accurate and real-time short-term passenger inflow and outflow prediction on holidays is essential for operation management and resource allocation to alleviate such overcrowding. However, short-term passenger inflow and outflow prediction on holidays is a challenging task influenced by various factors, including temporal dependencies, spatial dependencies, the temporal evolution of spatial dependencies, the interaction between inflow and outflow, and the limited holiday samples. To address these challenges, we propose a Spatial–Temporal Multi-Task Learning (STMTL) for short-term passenger inflow and outflow prediction on holidays in URT systems. STMTL comprises three parts: (1) Multi-Graph Channel Attention Network (MGCA) extracts both static and dynamic spatial dependencies from inter-station interaction graphs and then adaptively integrates multi-graph features. (2) Time Encoding-Gated Recurrent Unit (TE-GRU), utilizes time encoding gates to capture long-term periodic variations and unique fluctuations caused by holidays. (3) Cross-attention block (CAB) captures complex interactions during holidays and facilitates the sharing of spatiotemporal features between passenger inflow and outflow. The effectiveness and robustness of STMTL are validated on two real-world datasets from the Nanning URT system in China during the New Year’s Day period. Experimental results demonstrate that STMTL consistently outperforms several classic and state-of-the-art models. STMTL achieves a 3.87% and 3.39% average improvement over the best-performing baseline models at 15-min and 30-min granularities, highlighting its potential for practical applications in URT systems during holidays.</p>\",\"PeriodicalId\":49419,\"journal\":{\"name\":\"Transportation\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11116-025-10583-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11116-025-10583-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

乘客的快速增长导致城市轨道交通(URT)系统人满为患,尤其是在节假日期间,这给URT系统的安全管理和运营带来了巨大挑战。准确、实时的节假日短期客流预测对于运营管理和资源分配以缓解拥挤状况至关重要。然而,节假日短期乘客流入和流出预测是一项具有挑战性的任务,受到各种因素的影响,包括时间依赖性、空间依赖性、空间依赖性的时间演变、流入和流出之间的相互作用以及有限的节假日样本。为了应对这些挑战,我们提出了一种空间-时间多任务学习(STMTL)方法,用于在 URT 系统中预测节假日的短期乘客流入和流出情况。STMTL 包括三个部分:(1) 多图通道注意网络(MGCA)从站间交互图中提取静态和动态空间依赖关系,然后自适应地整合多图特征。(2) 时间编码门控递归单元(TE-GRU),利用时间编码门来捕捉长期周期性变化和节假日引起的独特波动。(3) 交叉关注块(CAB)捕捉节假日期间的复杂互动,促进乘客流入和流出之间的时空特征共享。STMTL 的有效性和鲁棒性在元旦期间中国南宁城市轨道交通系统的两个真实数据集上得到了验证。实验结果表明,STMTL 始终优于多个经典模型和最先进模型。在 15 分钟和 30 分钟粒度下,STMTL 比表现最好的基线模型平均分别提高了 3.87% 和 3.39%,这凸显了其在节假日期间 URT 系统中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial–temporal multi-task learning for short-term passenger inflow and outflow prediction on holidays in urban rail transit systems

The rapid growth of passengers has led to overcrowding in urban rail transit (URT) systems, especially during holidays, posing significant challenges to the safe management and operation of URT systems. Accurate and real-time short-term passenger inflow and outflow prediction on holidays is essential for operation management and resource allocation to alleviate such overcrowding. However, short-term passenger inflow and outflow prediction on holidays is a challenging task influenced by various factors, including temporal dependencies, spatial dependencies, the temporal evolution of spatial dependencies, the interaction between inflow and outflow, and the limited holiday samples. To address these challenges, we propose a Spatial–Temporal Multi-Task Learning (STMTL) for short-term passenger inflow and outflow prediction on holidays in URT systems. STMTL comprises three parts: (1) Multi-Graph Channel Attention Network (MGCA) extracts both static and dynamic spatial dependencies from inter-station interaction graphs and then adaptively integrates multi-graph features. (2) Time Encoding-Gated Recurrent Unit (TE-GRU), utilizes time encoding gates to capture long-term periodic variations and unique fluctuations caused by holidays. (3) Cross-attention block (CAB) captures complex interactions during holidays and facilitates the sharing of spatiotemporal features between passenger inflow and outflow. The effectiveness and robustness of STMTL are validated on two real-world datasets from the Nanning URT system in China during the New Year’s Day period. Experimental results demonstrate that STMTL consistently outperforms several classic and state-of-the-art models. STMTL achieves a 3.87% and 3.39% average improvement over the best-performing baseline models at 15-min and 30-min granularities, highlighting its potential for practical applications in URT systems during holidays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation
Transportation 工程技术-工程:土木
CiteScore
10.70
自引率
4.70%
发文量
94
审稿时长
6-12 weeks
期刊介绍: In our first issue, published in 1972, we explained that this Journal is intended to promote the free and vigorous exchange of ideas and experience among the worldwide community actively concerned with transportation policy, planning and practice. That continues to be our mission, with a clear focus on topics concerned with research and practice in transportation policy and planning, around the world. These four words, policy and planning, research and practice are our key words. While we have a particular focus on transportation policy analysis and travel behaviour in the context of ground transportation, we willingly consider all good quality papers that are highly relevant to transportation policy, planning and practice with a clear focus on innovation, on extending the international pool of knowledge and understanding. Our interest is not only with transportation policies - and systems and services – but also with their social, economic and environmental impacts, However, papers about the application of established procedures to, or the development of plans or policies for, specific locations are unlikely to prove acceptable unless they report experience which will be of real benefit those working elsewhere. Papers concerned with the engineering, safety and operational management of transportation systems are outside our scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信